Advertisement

Statistical properties of high-frequency internal waves in Qingdao offshore area of the Yellow Sea

  • Wang Tao
  • Gao Tian-fu
Physical Oceanography

Abstract

Densely-sampled thermistor chain data obtained from a shallow-water acoustics experiment in the Yellow Sea off the coast of Qingdao were analyzed to examine the statistical properties of the 6 to 520 cpd frequency band internal waves observed. The negative skewness coefficients and the greater-than-3 kurtosis coefficients indicated non-Gaussianity of the internal waves. The probability distributions were negatively skewed and abnormally high peaks. Nonlinear properties, as exemplified by the asymmetric waveshapes of the internal waves in the offshore area are described quantitatively.

Key words

shallow-water internal wave skewness kurtosis non-Gaussianity nonlinearity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apel, J. R., Badiey, M., Chiu, C. S., 1997. An overview of the 1995 SWAM shallow-water internal wave acoustic scattering experiment.IEEE J. Oceanic Eng. 22(3): 465–500.CrossRefGoogle Scholar
  2. Briscoe, M. G., 1977. Gaussianity of internal waves.J. Geophys. Res. 82(15): 2117–2126.CrossRefGoogle Scholar
  3. Holt, J. T., Thorpe, S. A., 1997. The propagation of high frequency internal waves in the Celtic Sea.Deep-Sea Res. 44(12): 2087–2116.CrossRefGoogle Scholar
  4. Ivanov, V. A., Pelinovsky, E. N., Talipova, T. G., 1993. The long-time prediction of intense internal wave heights in the tropical region of the Atlantic.J. Phys. Oceanogr. 23(9): 2136–2142.CrossRefGoogle Scholar
  5. Liu, X. A., Huang, P. J., Chen, X. Y. et al., 1998. A nonlinear model for nonbreaking shoaling random waves.Acta Oceanologica Sinica 20(3): 12–18. (in Chinese).Google Scholar
  6. Moum, J. N., Hebert, D., Paulson, C. A. et al., 1992. Turbulence and internal wave at the Equator. Part I: Statistics from towed thermistors and a microstructure profiler.J. Phys. Oceanogr. 22(11): 1330–1345.CrossRefGoogle Scholar
  7. Pringle, J. M., 1999. Observation of high-frequency internal waves in the coastal ocean dynamics region.J. Geophys. Res. 104(C3): 5263–5281.CrossRefGoogle Scholar
  8. Saggio, A., Imberger, J., 1998. Internal wave weather in a stratified lake.Limnol. Oceanogr. 43 (8): 1780–1795.Google Scholar
  9. Small, J., Hallock, Z., Pavey, G. et al., 1999. Observations of large amplitude internal waves at the Malin Shelf edge during SESAME 1995.Continental Shelf Res. 19: 1389–1436.CrossRefGoogle Scholar
  10. Thorpe, S. A., Lemmin, U., 1999. Internal waves and temperature fronts on slopes.Ann. Geophy.-Atmosph. Hydrosph. Space Sci. 17(9): 1227–1234.Google Scholar
  11. Wang, T., Gao, T. F., Zhang, Y. P. et al., 1999. Internal waves and sound-speed distributions in the Yellow Sea.J. Acoust. Soc. Am. 106(4): 2117. (in Chinese with English abstract)CrossRefGoogle Scholar
  12. Wang, T., Gao, T. F., 2001. Internal tides, solitary waves and bores in shallow seas.Chin. J. Oceanol. Limnol. 19(2): 103–111.CrossRefGoogle Scholar
  13. Wang, T., Gao, T. F., Jiang, D. J. et al., 2000. Nonlinear internal tides in the Yellow Sea. Proc. 10th Intl. Offshore Polar Eng. Conf., ISOPE, Seattle, Vol. III, 171–174.Google Scholar
  14. Xu, Z. T., 1999. Dynamics of Internal Waves in the Ocean. Sci. Press, Beijing, p. 1–336. (in Chinese)Google Scholar
  15. Zhao, J. S., 1992. Oceanography in China, 3, Study of Internal Waves in a Shallow Sea. Ocean Press, Beijing, p. 1–102. (in Chinese)Google Scholar

Copyright information

© Science Press 2002

Authors and Affiliations

  • Wang Tao
    • 1
  • Gao Tian-fu
    • 2
  1. 1.California Institute of TechnologyPasadenaUSA
  2. 2.Institute of AcousticsChinese Academy of SciencesBeijingChina

Personalised recommendations