, Volume 18, Issue 6, pp 517–523 | Cite as

A method of solution of the ornstein-zernike equation in one and three dimensions

  • B B Deo
  • B P Das
Mathematical And Statistical Physics


An elegant analytic method is presented to derive a modified form of the Ornstein-Zernike equation which not only solves the statistical mechanical problem for hard rods and spheres but can be used to find solutions for arbitrary non-vanishing direct correlation functions.


Direct correlation function total correlation function radial distribution function thin rods hard core central potentials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baxter R J 1967Phys. Rev. 154 170CrossRefADSGoogle Scholar
  2. Hiroike H and Fukui Y 1970Progr. Theor. Phys. 43 660CrossRefADSGoogle Scholar
  3. Meeron E 1960J. Math. Phys. 1 192MATHCrossRefADSMathSciNetGoogle Scholar
  4. Morita T and Hiroike K 1960Progr. Theor. Phys. 23 1003CrossRefADSMathSciNetGoogle Scholar
  5. Ornstein L S and Zernike F 1914Proc. Acad. Sci., Amsterdam 17 793Google Scholar
  6. Percus J K and Yevick G J 1958Phys. Rev. 110 1MATHCrossRefADSMathSciNetGoogle Scholar
  7. Thiele E 1963J. Chem. Phys. 39 474CrossRefADSGoogle Scholar
  8. Van Leeuwen J M J, Groeneveld J and de Boer J 1959Physica 25 792MATHCrossRefADSMathSciNetGoogle Scholar
  9. Wertheim M S 1964J. Math. Phys. 5 643MATHCrossRefADSMathSciNetGoogle Scholar
  10. Zernike F and Prins J A 1927Z. Phys. 41 184.CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 1982

Authors and Affiliations

  • B B Deo
    • 1
  • B P Das
    • 1
  1. 1.Department of PhysicsUtkal UniversityBhubaneswarIndia

Personalised recommendations