Advertisement

Pramana

, Volume 36, Issue 1, pp 95–103 | Cite as

Spherically symmetric static inhomogeneous cosmological models

  • J Krishna Rao
  • M Annapurna
Research Articles

Abstract

Spherically symmetric static cosmological models filled with black-body radiation are considered. The models are isotropic about a central observer but inhomogeneous. It is suggested that the energy density of the free gravitational field, which is coupled to the isotropic radiation energy density, might play an important role in generating sufficient field (vacuum) energy (when converted into thermal energy) and initiate processes like inflation. On the central world line the energy density of the free gravitational field vanishes whereas the proper pressure and density of the isotropic black-body radiation are constants. Further, it is shown that the cosmological constant is no more arbitrary but given in terms of the central pressure and density. Also, at its maximum value the energy density of the free gravitational field is proved to be equal to one third of the combined value of radiation pressure and density.

Keywords

Cosmology energy density of the free gravitational field black-body radiation inflation 

PACS No.

98.80 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbot L F and Pi S-Y 1986Inflationary cosmology (Singapore: World Scientific)Google Scholar
  2. Bondi H 1947Mon. Not. R. Astron. Soc. 107 410MATHADSMathSciNetGoogle Scholar
  3. Bondi H 1964Proc. R. Soc. London A282 303ADSMathSciNetGoogle Scholar
  4. Bonnor W B 1972Mon. Not. R. Astron. Soc. 159 261ADSGoogle Scholar
  5. Bonnor W B 1974Mon. Not. R. Astron. Soc. 167 55ADSGoogle Scholar
  6. Borner G 1988The early universe — facts and fiction (Berlin: Springer-Verlag)Google Scholar
  7. Collins C B 1983J. Math. Phys. 24 215CrossRefADSMathSciNetGoogle Scholar
  8. Ellis G F R 1978Gen. Relativ. Gravit. 9 87CrossRefADSGoogle Scholar
  9. Ellis G F R, Maartens R and Nel S D 1978Mon. Not. R. Astron. Soc. 184 439ADSGoogle Scholar
  10. Krishna Rao J 1966Curr. Sci. 35 589Google Scholar
  11. Krishna Rao J and Annapurna M 1985A random walk in relativity and cosmology (ed.) N Dadhich, J Krishna Rao, J V Narlikar and C V Vishveshwara (New Delhi: Wiley Eastern)Google Scholar
  12. Krishna Rao J and Annapurna M 1986Pramana — J. Phys. 27 637ADSGoogle Scholar
  13. Krishna Rao J 1990Pramana — J. Phys. 34 423ADSGoogle Scholar
  14. Omer G C (Jr) 1949Astrophys. J. 109 164CrossRefADSGoogle Scholar
  15. Tolman R C 1934Proc. Natl. Acad. Sci. USA 20 169MATHCrossRefADSGoogle Scholar
  16. Tolman R C 1949Rev. Mod. Phys. 21 374CrossRefGoogle Scholar
  17. Wilczek F 1983The very early universe (ed.) G W Gibbons, S W Hawking and S T C Siklos (Cambridge: University Press)Google Scholar

Copyright information

© the Indian Academy of Sciences 1991

Authors and Affiliations

  • J Krishna Rao
    • 1
  • M Annapurna
    • 1
    • 2
  1. 1.Department of MathematicsBhavnagar UniversityBhavnagarIndia
  2. 2.Department of MathematicsVasavi College of EngineeringHyderabadIndia

Personalised recommendations