Advertisement

Pramana

, Volume 23, Issue 1, pp 1–16 | Cite as

Rotating relativistic electron beam-plasma interaction and formation of a field-reversed configuration

  • K K Jain
  • P I John
Plasma Physics

Abstract

Experimental results on interaction of a rotating relativistic electron beam with plasma and neutral gas are presented. The rotating relativistic electron beam has been propagated up to a distance of 150 cm in a plasma. The response of the plasma to the rotating electron beam is found to be of magnetic diffusion type over a plasma density range 1011–1013 cm−3. Excitation of the axial and azimuthal return currents by the rotating beam and subsequent trapping of the azimuthal return current layer by the magnetic mirror field are observed. A field-reversed configuration has been formed by the rotating relativistic electron beam when injected into neutral hydrogen gas. We have observed field reversal up to three times the initial field in an axial length of 100 cm.

Keywords

Relativistic electron beam return current plasma heating field-reversed configuration 

PACS No.

52·60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrew M L, Daviation H, Fleischmann H H, Kusse B, Kribel R E and Nation J A 1971Phys. Rev. Lett. 27 1428CrossRefADSGoogle Scholar
  2. Armstrong W T, Linford R K, Lipson J, Platts D A and Sherwood E G 1981Phys. Fluids 24 2068CrossRefADSGoogle Scholar
  3. Bagratashoili V N, Knyazev I N, Kudryartsev Yu A and Letikhov V S 1973Opt. Commun. 9 135CrossRefADSGoogle Scholar
  4. Chu K R, Kapetanakos C A and Clark R W 1975Appl. Phys. Lett. 27 185CrossRefADSGoogle Scholar
  5. Chu K R and Rostoker N 1974Phys. Fluids 17 813CrossRefADSGoogle Scholar
  6. Es’Kov A G, Kurtmullaev R Kh, Kreshdruk A P, Laukhain Ya N, Malyutin A I, Markin A I, Martyushov Yu S, Moronov B N, Orlov M M, Proshletsov A P, Semenov V N and Sosunov Yu B 1978 VIIConf. on Plasma Physics and Controlled Fusion Vol. II 187Google Scholar
  7. Graybill S E and Uglum J R 1970J. Appl. Phys. 41 230CrossRefGoogle Scholar
  8. Jain K K, John P I, Punithavelu A M and Rao P P 1980J. Phys. E 13 928CrossRefADSGoogle Scholar
  9. Jain K K and John P I 1981Proc. Indian Acad. Sci. (Engg. Sci.) 4 75Google Scholar
  10. Jain K K 1982, Ph.D. Thesis, Physical Research LaboratoryGoogle Scholar
  11. Jarboe T R, Henins I, Hoider H W, Lindford R K, Marshall J, Platts D A and Sherwood A R 1980Phys. Rev. Lett 45 1264CrossRefADSGoogle Scholar
  12. Kapetanakos C A, Black W M and Chu K R 1975aPhys. Rev. Lett. 34 1156CrossRefADSGoogle Scholar
  13. Kapetanakos C A, Black W M and Striffler C D 1975bAppl. Phys. Lett. 26 368CrossRefADSGoogle Scholar
  14. Molvig K and Rostoker N 1977aPhys. Fluids 20 494CrossRefADSGoogle Scholar
  15. Molvig K and Rostoker N 1977bPhys. Fluids 20 504CrossRefADSGoogle Scholar
  16. Nation J A 1970Appl. Phys. Lett. 21 491CrossRefADSGoogle Scholar
  17. Nebenzahl I 1973Plasma Phys. 15 1149CrossRefADSGoogle Scholar
  18. Oswald R B, Eisen R A and Conrad E E 1966IEEE Trans. Nucl. Sci. NS-13 229Google Scholar
  19. Roberson C W 1978Nucl. Fusion 18 1693ADSGoogle Scholar
  20. Roberson C W, Tzach D and Rostoker N 1978Appl. Phys. Lett. 32 214CrossRefADSGoogle Scholar
  21. Rej D 1981 Ph.D. Thesis, Cornell UniversityGoogle Scholar
  22. Schmidt G 1962Phys. Fluids 5 994MATHCrossRefADSGoogle Scholar
  23. Sethian J D, Gerber K A, Hammer D A, Spector D N and Robson A E 1978aPhys. Fluids 21 1227CrossRefADSGoogle Scholar
  24. Sethian J D, Gerber K A, Spector D N and Robson A E 1978bPhys. Rev. Lett. 41 798CrossRefADSGoogle Scholar
  25. Sethian J D, Gerber K A and Robson A E 1982NRL Memorandum Report No. 4932Google Scholar
  26. Striffler C D and Kapetanakos C A 1975J. Appl. Phys. 46 2509CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 1984

Authors and Affiliations

  • K K Jain
    • 1
  • P I John
    • 1
  1. 1.Plasma Physics ProgrammePhysical Research LaboratoryAhmedabadIndia

Personalised recommendations