, Volume 22, Issue 6, pp 489–496 | Cite as

On the quantisation of dissipative systems

  • M C Valsakumar


Two methods of quantisation of dissipative systems are considered. It is shown that the phase space description of quantum mechanics permits computational simplification, when Kanai’s method is adopted. Since the Moyal Bracket is the same as the Poisson Bracket, for systems described by a most general explicitly time dependent quadratic Lagrangian, the phase space distribution can be obtained as the solution of the corresponding classical Langevin equations in canonical variables, irrespective of the statistical properties of the noise terms. This result remains true for arbitrary potentials too in an approximate sense. Also analysed are Dekker’s theory of quantisation, violation of uncertainty principle in that theory and the reason for the same.


Quantum diffusion quantum dissipative systems Langevin equation stochastic Liouville equation Wigner distribution Moyal Bracket 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal G S 1974 inSpringer tracts in modern physics (ed) G Hohler (New York: Springer Verlag) Vol 70Google Scholar
  2. Benguria R and Kac M 1981Phys. Rev. Lett. 46 1CrossRefADSMathSciNetGoogle Scholar
  3. Dekker H 1975Z. Phys. B21 295ADSGoogle Scholar
  4. Dekker H 1977Phys. Rev. A16 2126ADSMathSciNetGoogle Scholar
  5. Greenberger D M 1979J. Math. Phys. 20 762CrossRefADSGoogle Scholar
  6. Gzyl H 1983Phys. Rev. A27 2297ADSMathSciNetGoogle Scholar
  7. Haken H 1975Rev. Mod. Phys. 47 67CrossRefADSMathSciNetGoogle Scholar
  8. Hasse R W 1975J. Math. Phys. 16 2005CrossRefADSGoogle Scholar
  9. Jayannavar A M and Kumar N 1982Phys. Rev. Lett. 48 553CrossRefADSGoogle Scholar
  10. van Kampen 1976Phys. Rep. C24 171CrossRefADSGoogle Scholar
  11. Kanai E 1948Prog. Theor. Phys. 8 440ADSGoogle Scholar
  12. Louisell W H 1973 inQuantum statistical properties of radiation (New York: Wiley)Google Scholar
  13. Moyal J E 1949Proc. Camb. Philos. Soc. 45 99MATHMathSciNetCrossRefGoogle Scholar
  14. Novikov E A 1965Sov. Phys. JETP 20 1290Google Scholar
  15. Papadopoulos G J 1976Phys. Rev. D11 2870ADSMathSciNetGoogle Scholar
  16. Sahoo D 1972 in unpublished thesis (New York: Yeshiva University)Google Scholar
  17. Sahoo D 1983 Private communicationGoogle Scholar
  18. Senitzky I R 1960Phys. Rev. 119 670MATHCrossRefADSMathSciNetGoogle Scholar
  19. Valsakumar M C 1983J. Stat. Phys. 32 545CrossRefADSMathSciNetGoogle Scholar
  20. Yasue K 1978Ann. Phys. 114 479CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 1984

Authors and Affiliations

  • M C Valsakumar
    • 1
  1. 1.Materials Science LaboratoryReactor Research CentreKalpakkamIndia

Personalised recommendations