Advertisement

Pramana

, Volume 14, Issue 2, pp 165–173 | Cite as

Observations on a high temperature peak in the thermoluminescence of fluorites

  • M A El-Kolaly
  • S M D Rao
  • K S V Nambi
  • A K Ganguly
Solid State Physics

Abstract

A new peak at about 650°C has been observed in the thermoluminescence emission of gamma irradiated natural fluorites containing significant quantities of lanthanide rare-earth (RE) elements as impurities. Thermal activation energy of the corresponding trap has been evaluated to be 2·99 eV with a frequency factor of 1016 sec−1. The optical activation energy, as deduced from photo-transfer-induced-TL from this trap, is 5·36 eV. Many types of natural fluorites as well as synthetically grown CaF2 crystals doped with single and pairs of rare earth elements have been studied and the results indicate that the high temperature peak is associated with Sm impurity coexisting with Y, La or Ce in CaF2. There are indications that this newly observed TL peak can be gainfully employed in ultraviolet dosimetry and geological dating of fluorite deposits.

Keywords

Thermoluminescence CaF2 crystals frequency factor rare earth elements dosimentry geological dating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonfiglioli G 1968Thermoluminescence of geological materials ed. D J Mc Dougall (New York: Academic Press) p. 15Google Scholar
  2. El-Kolaly M A 1977Thermoluminescence studies of natural and doped CaF 2 phosphors, Ph.D. Thesis University of Bombay, BombayGoogle Scholar
  3. Fong F K 1967Progress in solid state chemistry ed H Reiss (New York: Pergamon)3 135Google Scholar
  4. Garlick G F J and Gibson A F 1948Proc. Phys. Soc. 60 574CrossRefADSGoogle Scholar
  5. Halperin A and Braner A A 1960Phys. Rev. 117 408CrossRefADSGoogle Scholar
  6. Kaufhold J and Herr W 1968Thermoluminescence of geological materials ed. D J Mc Dougall (New York: Academic Press) p 153Google Scholar
  7. Merz J L and Pershan P S 1967Phys. Rev. 162 217CrossRefADSGoogle Scholar
  8. Nakajima T 1971Proc. Third Int. Conf. Lumin. Disim. Riso Rept 249 (Denmark: Danish Atomic Energy Comm.)Google Scholar
  9. Nambi K S V, Kathuria S P and Sunta C M 1968Radiation protection monitoring (Vienna: IAEA) p. 321Google Scholar
  10. Nambi K S V, Bapat V N and Bhasin B D 1974Further advances in lunar research: LUNA 16and 20samples eds N Bhandari and M N Rao (New Delhi: Indian National Science Academy) p. 111Google Scholar
  11. Nambi K S V 1975Nucl. Instrum. Meth. 130 239–243CrossRefGoogle Scholar
  12. Pringsheim P 1949Fluorescence and phosphorescence (New York: Interscience) p. 660Google Scholar
  13. Przibram K 1956Irradiation colours and luminescence (New York: Pergamon) p. 176Google Scholar
  14. Rao S M D 1975Proc. Natl. Symp. TL and Appls. (Bombay: Bhabha Atomic Res. Centre.) p. 691Google Scholar
  15. Samant R K, Kumar P V, Khatri D T and Nambi K S V 1974First Asian Regional Congress on Radiation Protection (Bombay: IARP, Bhabha Atomic Res. Centre) p. 52Google Scholar
  16. Sunta C M, Kathuria S P and Nambi K S V 1970Proc. Natl. Symp. Radn. Phys. (Bombay: Bhabha Atomic Res. Centre.) p. 299Google Scholar
  17. Sunta C M, Bapat V N and Kathuria S P 1971Proc. Third Int. Conf. Lumin. Dosim, Riso Rept. 249 (Denmark: Danish Atomic Energy Comm.) p. 146Google Scholar
  18. Sunta C M 1971Proc. Third Int. Conf. Lumin. Dosim. Riso Rept. 249 (Denmark: Danish Atomic Energy Comm.) p. 392Google Scholar
  19. Townsend P D, Clark C D and Levy P W 1967Phys. Rev. 155 908CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 1980

Authors and Affiliations

  • M A El-Kolaly
    • 1
  • S M D Rao
    • 1
  • K S V Nambi
    • 1
  • A K Ganguly
    • 1
  1. 1.Health Physics DivisionBhabha Atomic Research CentreBombay

Personalised recommendations