, Volume 13, Issue 4, pp 423–445 | Cite as

Model for infrared and Raman studies of molecular rotations in liquids and gases

  • S Dattagupta
  • A K Sood


Experimental infrared and Raman data for molecular rotations in dense phases often lie in between the results predicted by theJ- andM-diffusion models of Gordon. In this paper, we present a theory which is similar in its basic approach to Gordon’s extended diffusion models (EDM) but in which the restrictions of theJ andM limits are removed. The outcome is a scheme which allows one to describe situations which fall between the two extreme pictures of theJ andM models. Application of this scheme to experiments is discussed.


Molecular rotations infrared line shapes Raman line shapes generalised extended diffusion models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz and Stegun I A 1965Handbook of mathematical functions (New York: Dover)Google Scholar
  2. Balakrishnan V 1979Pramana 13 Google Scholar
  3. Berne B J and Harp G D 1970Adv. Chem. Phys. 17 63CrossRefGoogle Scholar
  4. Berne B J and Pecora R 1976Dynamic light scattering (New York: John Wiley)Google Scholar
  5. Bliot F, Abbar C and Constant E 1972Mol. Phys. 24 241CrossRefADSGoogle Scholar
  6. Clauser M J and Blume M 1971Phys. Rev. B3 583ADSGoogle Scholar
  7. Dattagupta S 1975Phys. Rev. B12 47ADSGoogle Scholar
  8. Dattagupta S 1977aPhys. Rev. B16 158ADSGoogle Scholar
  9. Dattagupta S 1977bPramana 9 203ADSCrossRefGoogle Scholar
  10. Dattagupta S 1977cNucl. Phys. Solid State Phys. (India) A20 19Google Scholar
  11. Edmonds A R 1957Angular momentum in quantum mechanics (Princeton: University Press)MATHGoogle Scholar
  12. Favro L D 1960Phys. Rev. 53 119MathSciNetGoogle Scholar
  13. Fixman M and Rider K 1969J. Chem. Phys. 51 2425CrossRefADSGoogle Scholar
  14. Gordon R G 1966J. Chem. Phys. 44 1830CrossRefADSGoogle Scholar
  15. Gordon R G 1968Adv. Magn. Reson. 3 1Google Scholar
  16. Hubbard P S 1963Phys. Rev. 131 1155CrossRefADSGoogle Scholar
  17. Keilson J and Storer J E 1952Q. J. Appl. Maths. 10 243MATHMathSciNetGoogle Scholar
  18. Kluc E and Powles J G 1975Mol. Phys. 30 1109CrossRefADSGoogle Scholar
  19. Krynicki K and Powles J G 1972J. Magn. Reson. 6 539Google Scholar
  20. Marsault J P, Marsault-Herail F and Levi G 1975J. Chem. Phys. 62 893CrossRefADSGoogle Scholar
  21. McClung R E D 1969J. Chem. Phys. 51 3842CrossRefADSGoogle Scholar
  22. McClung R E D 1971aJ. Chem. Phys. 54 3248CrossRefADSGoogle Scholar
  23. McClung R E D 1971bJ. Chem. Phys. 55 3459CrossRefADSGoogle Scholar
  24. McClung R E D 1972J. Chem. Phys. 57 5478CrossRefADSGoogle Scholar
  25. McClung R E D 1977Adv. Mol. Relaxation Processes 10 88Google Scholar
  26. Mori H 1965aProg. Theor. Phys. 33 423MATHCrossRefADSGoogle Scholar
  27. Mori H 1965bProg. Theor. Phys. 34 399CrossRefADSGoogle Scholar
  28. Mountain R D 1971J. Chem. Phys. 54 3243CrossRefADSGoogle Scholar
  29. Rautian S G and Sobel’man I I 1967Sov. Phys. Usp. 9 701CrossRefADSGoogle Scholar
  30. Steele W A 1976Adv, Chem. Phys. 34 1CrossRefMathSciNetGoogle Scholar
  31. St. Pierre A G and Steele W A 1972J. Chem. Phys. 57 4638CrossRefADSGoogle Scholar
  32. Van Kampen N G 1976Phys. Rep. 24 171CrossRefADSMathSciNetGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1977

Authors and Affiliations

  • S Dattagupta
    • 1
  • A K Sood
    • 1
  1. 1.Reactor Research CentreKalpakkam

Personalised recommendations