, Volume 12, Issue 2, pp 121–138 | Cite as

Lattice dynamics of impurity clusters. Application to pairs

  • N Chandralekha Devi
  • S N Behera


A general solution is obtained for the lattice dynamics of a cluster ofn-impurity atoms using the double-time Green’s function formalism. The cluster is characterized byn-mass defect andm-force constant change parameters. It is shown that this general solution for the Green’s function for then-impurity cluster can also be expressed in terms of the Green’s function for the (n−1)-impurity cluster. As an application, the cluster impurity modes for a pair are calculated using the Debye model for the host lattice dynamics. The splitting of the high frequency local modes and nearly zero frequency resonant modes due to pairs show an oscillatory behaviour on varying the distance of separation between the two impurity atoms. These oscillations are most prominent for two similar impurities and get damped for two dissimilar impurities or if one of the impurities produces a force constant change. The predictions of the calculation provide qualitative explanation of the data obtained from the infrared measurements of the resonant modes in mixed crystal system of KBr1−c Cl c : Li+ and KBr1−c I c : Li+.


Impurity modes impurity clusters pair modes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barker Jr A S and Sievers A J 1975Rev. Mod. Phys. 47 Suppl. No. 2. p. 1Google Scholar
  2. Barth W and Fritz B 1967Phys. Status Solidi. 19 515CrossRefGoogle Scholar
  3. Bauerle D 1973Springer Tracts Mod. Phys. 68 76Google Scholar
  4. Behera S N 1974Phys. Lett. A50 285ADSGoogle Scholar
  5. Behera S N and Deo B 1967Phys. Rev. 153 728CrossRefADSGoogle Scholar
  6. Behera S N and Tripathi R S 1974J. Phys. C7 4452ADSGoogle Scholar
  7. Behera S N and Patnaik K 1975Phys. Rev. B12 4547ADSGoogle Scholar
  8. Behera S N and Patnaik K 1976Pramana 7 102ADSGoogle Scholar
  9. Behera S N and Chandralekha Devi N 1978 IP Preprint IP/BBSR/78-10 (unpublished).Google Scholar
  10. Bloom P and Mattis D C 1977Phys. Rev. B15 3633ADSGoogle Scholar
  11. Chandralekha Devi N and Behera S N 1978J. Phys. C 11 241ADSGoogle Scholar
  12. Chandralekha Devi N and Behera S N 1977 IP Preprint IP/BBSR/77-2 (unpublished).Google Scholar
  13. Clayman B P and Sievers A J 1968 inLocalised excitations in Solids ed. R F Wallis (Plenum Press) p. 54Google Scholar
  14. de Souza M, Ganogora A D, Aegerter M and Luty F 1970Phys. Rev. Lett. 25 1426CrossRefADSGoogle Scholar
  15. Elliot R J and Pfeuty P 1967J. Phys. Chem. Solids. 28 1789CrossRefADSGoogle Scholar
  16. Elliot R J, Krumhansl J A and Leath P L 1974Rev. Mod. Phys. 46 465CrossRefADSGoogle Scholar
  17. Eshelby J D 1956Solid State Physics eds. F Seitz and D Turnbull (New York: Academic Press)3 71Google Scholar
  18. Kumar V and Joshi S K 1975J Phys. C8 L148Google Scholar
  19. Maradudin A A 1965Rep. Prog. Phys. 28 331CrossRefADSGoogle Scholar
  20. Mirlin D N and Reshina N N 1966Sov. Phys. Solid State 8 116Google Scholar
  21. Nayak P and Behera S N 1978Pramana 10 621ADSCrossRefGoogle Scholar
  22. Patnaik K and Behera S N 1976Phys. Rev. B13 2705ADSGoogle Scholar
  23. Schaefer G 1960J. Phys. Chem. Solids 12 233CrossRefADSGoogle Scholar
  24. Schneider I 1973Solid State Commun. 12 161CrossRefADSGoogle Scholar
  25. Takeno S 1965Prog. Theor. Phys. 33 363CrossRefADSGoogle Scholar
  26. Tripathi R S and Behera S N 1974J. Phys. C7 4470ADSGoogle Scholar
  27. Ward R W and Clayman B P 1974Phys. Rev. B9 4455ADSGoogle Scholar
  28. Ward R W, Clayman B P and Jaswal S S 1974Solid State Commun. 14 1335CrossRefADSGoogle Scholar
  29. Zubarev D N 1960Sov. Phys. USPEKHI3 71CrossRefMathSciNetGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1977

Authors and Affiliations

  • N Chandralekha Devi
    • 1
  • S N Behera
    • 1
  1. 1.Institute of PhysicsBhubaneswar

Personalised recommendations