Advertisement

Pramana

, Volume 32, Issue 6, pp 769–792 | Cite as

Hamilton’s theory of turns and a new geometrical representation for polarization optics

  • R Simon
  • N Mukunda
  • ECG Sudarshan
Optics

Abstract

Hamilton’s theory of turns for the group SU(2) is exploited to develop a new geometrical representation for polarization optics. While pure polarization states are represented by points on the Poincaré sphere, linear intensity preserving optical systems are represented by great circle arcs on another sphere. Composition of systems, and their action on polarization states, are both reduced to geometrical operations. Several synthesis problems, especially in relation to the Pancharatnam-Berry-Aharonov-Anandan geometrical phase, are clarified with the new representation. The general relation between the geometrical phase, and the solid angle on the Poincaré sphere, is established.

Keywords

Polarization optics geometrical phases theory of turns Poincaré sphere Pancharatnam phase 

PACS Nos

42·10 02·20 42·78 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharonov Y and Anandan J 1987Phys. Rev. Lett. 58 1593CrossRefADSMathSciNetGoogle Scholar
  2. Berry M V 1984Proc. R. Soc. (London) A392 45ADSMathSciNetGoogle Scholar
  3. Berry M V 1985J. Phys. A18 15ADSMathSciNetGoogle Scholar
  4. Berry M V 1987Nature (London) 326 277CrossRefADSGoogle Scholar
  5. Berry M V 1987Proc. R. Soc. (London) A414 31ADSMathSciNetGoogle Scholar
  6. Bhandari R and Samuel J 1988Phys. Rev. Lett. 60 1211CrossRefADSMathSciNetGoogle Scholar
  7. Biedenharn L C and Louck J D 1981Angular momentum in quantum physics, Encyclopedia of mathematics and its applications (Reading, Massachusetts: Addision-Wesley Publishing Co.) Vol. 8MATHGoogle Scholar
  8. Born M and Wolf E 1965Principles of optics (Oxford: Pergamon Press) p. 31Google Scholar
  9. Chiao R Y and Wu Y S 1986Phys. Rev. Lett. 57 933CrossRefADSGoogle Scholar
  10. Chyba T H, Wang L J, Mandel L and Simon R 1988 Measurement of the Pancharatnam phase for a light beam,Opt. Lett. (in press)Google Scholar
  11. Hamilton W 1853 Lectures on quaternions, DublinGoogle Scholar
  12. Mukunda N, Simon R and Sundarshan E C G 1983Phys. Rev. A28 2933ADSGoogle Scholar
  13. Mukunda N, Simon R and Sudarshan E C G 1985J. Opt. Soc. Am. A2 416ADSMathSciNetCrossRefGoogle Scholar
  14. Poincaré H 1892Theorie Mathematique de la Lumiere, (ed.) George Carré, Paris, p. 275Google Scholar
  15. Pancharatnam S 1956Proc. Indian Acad. Soc. A44 247 reprinted in Collected works of S Pancharatnam, Oxford University Press, 1975MathSciNetGoogle Scholar
  16. Ramachandran G N and Ramaseshan S 1961Crystal optics, Handbuch der Physik, Vol. XXV/1 (Berlin: Springer-Verlag)Google Scholar
  17. Ramaseshan S and Nityananda R 1986Curr. Sci. 55 1225Google Scholar
  18. Simon R, Kimble H J and Sudarshan E C G 1988Phys. Rev. Lett. 61 19CrossRefADSGoogle Scholar
  19. Simon R and Kumar N 1988J. Phys. A (in press)Google Scholar
  20. Simon R, Sudarshan E C G and Mukunda N 1989Phys. Rev. Lett. 62 1331CrossRefADSMathSciNetGoogle Scholar
  21. Sudarshan E C G, Mukunda N and Simon R 1985Optica Acta 32 855Google Scholar
  22. Stokes G G 1852Trans. Camb. Phil. Soc. 9 399Google Scholar

Copyright information

© Indian Academy of Sciences 1989

Authors and Affiliations

  • R Simon
    • 1
  • N Mukunda
    • 1
  • ECG Sudarshan
    • 1
    • 2
  1. 1.Centre for Theoretical StudiesIndian Institute of ScienceBangaloreIndia
  2. 2.Department of PhysicsUniversity of Texas at AustinAustinUSA

Personalised recommendations