Advertisement

Pramana

, Volume 32, Issue 4, pp 389–404 | Cite as

Relativistic mean-field description of the ground-state nuclear properties

  • Y K Gambhir
  • P Ring
Self-Consistent Field Theory For Nuclei

Abstract

The results of the relativistic mean field (RMF) calculations are presented for the ground-state properties of characteristic deformed nuclei covering the entire periodic table. The representative cases in the 2s − 1d, rare-earth and actinide regions are explicitly considered. The pairing correlations are considered in the constant gap approximation. It is observed that the set of parameters appearing in the Lagrangian chosen to reproduce the ground-state properties of nuclear matter and spherical doubly magic nuclei, also turns out to give a very satisfactory description of light- and heavy-deformed nuclei.

Keywords

Relativistic mean field deformed nuclei Dirac spinors Klein-Gordon bosons binding energy root mean square radii quadrupole moments 

PACS No.

21.60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold L G, Clark B C, Mercer R L and Schwandt P 1981Phys. Rev. C23 1949ADSGoogle Scholar
  2. Boguta J and Bodmer A R 1977Nucl. Phys. A292 414ADSMathSciNetGoogle Scholar
  3. Boguta J 1981Phys. Lett. B106 250ADSGoogle Scholar
  4. Clark B C, Mercer R L and Schwandt P 1983Phys. Lett. B122 211ADSGoogle Scholar
  5. deVries H, deJager C W and deVries C 1987At. Data Nucl. Data Tables 36 495CrossRefADSGoogle Scholar
  6. Furnstahl R J 1985Phys. Lett. B152 313ADSGoogle Scholar
  7. Furnstahl R J and Serot B D 1986 Nuclear Theoretical Centre, Indiana Univ., Report No. 86-3Google Scholar
  8. Gambhir Y K and Ring P 1988Phys. Lett. B202 5ADSGoogle Scholar
  9. Gogny D 1975Nucl. Phys. A237 399ADSMathSciNetGoogle Scholar
  10. Horowitz C J and Serot B D 1981Nucl. Phys. A368 503 (and references cited therein)ADSGoogle Scholar
  11. Horowitz C J and Serot B D 1984Phys. Lett. B140 181ADSGoogle Scholar
  12. Pannert W, Ring P and Boguta J 1987Phys. Rev. Lett. 59 2420CrossRefADSGoogle Scholar
  13. Price C E and Walker G E 1985Phys. Lett. B155 17ADSGoogle Scholar
  14. Price M W 1986aProc. of the Los Alamos Workshop on relativistic dynamics and quark nuclear physics (eds) B Johnson and A Pickesimer (New York: John Wiley) p. 363Google Scholar
  15. Price M W 1986b Ph.D. Thesis, Indiana University (unpublished)Google Scholar
  16. Price C E and Walker G E 1987Phys. Rev. C36 1354ADSGoogle Scholar
  17. Reinhard P G, Rufa M, Maruhn J, Greiner W and Friedrich J 1986Z. Phys. A323 13Google Scholar
  18. Raman S, Malarkey C H, Milner W T, Nestor C W Jr and Stelson P H 1987At. Data Nucl. Data Tables 36 1CrossRefADSGoogle Scholar
  19. Serot B D 1981Phys. Lett. B107 263ADSGoogle Scholar
  20. Serot B D and Walecka J D 1983Adv. Nucl. Phys. 16 1 (and references cited therein)Google Scholar
  21. Skyrme T H R 1956Philos. Mag. 1 1043MATHCrossRefGoogle Scholar
  22. Suk-Joon Lee, Fink J, Balantekin A B, Strayer M R, Umar A S, Reinhard P G, Maruhn J A and Greiner W 1986Phys. Rev. Lett. 57 2916CrossRefADSGoogle Scholar
  23. Suk-Joon Lee, Fink J, Balantekin A B, Strayer M R, Umar A S, Reinhard P G, Maruhn J A and Greiner W 1987Phys. Rev. Lett. 59 1171 (Erratum)ADSGoogle Scholar
  24. Vautherin D 1972Phys. Rev. C7 296ADSGoogle Scholar
  25. Walecka J D 1974Ann. Phys. 83 491CrossRefADSGoogle Scholar
  26. Wapstra A H and Bos K 1977At. Data Nucl. Data Tables 19 1CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 1989

Authors and Affiliations

  • Y K Gambhir
    • 1
  • P Ring
    • 1
    • 2
  1. 1.Department of PhysicsIndian Institute of TechnologyPowai, BombayIndia
  2. 2.Physikdepartment der Technischen Universitat MunchenGarchingFederal Republic of Germany

Personalised recommendations