, Volume 48, Issue 6, pp 1123–1134 | Cite as

Spin state and exchange in the quasi-one-dimensional antiferromagnet KFeS2

  • Satish Kumar Tiwary
  • Sukumaran Vasudevan


We report the optical spectra and single crystal magnetic susceptibility of the one-dimensional antiferromagnet KFeS2. Measurements have been carried out to ascertain the spin state of Fe3+ and the nature of the magnetic interactions in this compound. The optical spectra and magnetic susceptibility could be consistently interpreted using aS=1/2 spin ground state for the Fe3+ ion. The features in the optical spectra have been assigned to transitions within thed-electron manifold of the Fe3+ ion, and analysed in the strong field limit of the ligand field theory. The high temperature isotropic magnetic susceptibility is typical of a low-dimensional system and exhibits a broad maximum at ∼565K. The susceptibility shows a well defined transition to a three dimensionally ordered antiferromagnetic state atT N=250 K. The intra and interchain exchange constants,J andJ′, have been evaluated from the experimental susceptibilities using the relationship between these quantities, andχ max,T max, andT N for a spin 1/2 one-dimensional chain. The values areJ=−440.71 K, andJ′=53.94 K. Using these values ofJ andJ′, the susceptibility of a spin 1/2 Heisenberg chain was calculated. A non-interacting spin wave model was used belowT N. The susceptibility in the paramagnetic region was calculated from the theoretical curves for an infiniteS=1/2 chain. The calculated susceptibility compares well with the experimental data of KFeS2. Further support for a one-dimensional spin 1/2 model comes from the fact that the calculated perpendicular susceptibility at 0K (2.75×10−4 emu/mol) evaluated considering the zero point reduction in magnetization from spin wave theory is close to the projected value (2.7×10−4 emu/mol) obtained from the experimental data.


Low-dimensional materials magnetic ordering and exchange spin-waves 


75.10 75.30 78.40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W Bronger,Angew. Chem. Int. Ed. 20, 52 (1981)CrossRefGoogle Scholar
  2. [2]
    W Bronger,Z. Anorg. Allg. Chem. 359, 225 (1968)CrossRefGoogle Scholar
  3. [3]
    D Raj and S P PuriJ. Chem. Phys. 50, 3184 (1969)CrossRefADSGoogle Scholar
  4. [4]
    C A Taft, D Raj and J Danon,J. Phys. 35, C6–241 (1974)Google Scholar
  5. [5]
    C A Taft,J. Phys. 38, 1161 (1977)Google Scholar
  6. [6]
    R B Scorzelli, C A Taft, J Danon and V K Garg,J. Phys. C11, 1397 (1978)Google Scholar
  7. [7]
    T P Arsenio, P H Domigues, N C Furtado and C A Taft,Solid State Commun. 38, 205 (1981)CrossRefADSGoogle Scholar
  8. [8]
    D M Cooper, D P E Dickson, P H Domingues, C P Gupta, C E Johnson, M F Thomas, C A Taft and P J Walker,J. Magn. Magn. Mater. 36, 171 (1983)CrossRefADSGoogle Scholar
  9. [9]
    J Zink and K Nagorny,J. Phys. Chem. Solids 49 1429 (1988)CrossRefGoogle Scholar
  10. [10]
    L Cianchi, F Del Giallo and F Pieralli,J. Phys. C21, 2931 (1988)ADSGoogle Scholar
  11. [11]
    M Nishi and Y Ito,Solid State Commun. 30, 571 (1979)CrossRefADSGoogle Scholar
  12. [12]
    Z Tomkowicz, A Szytula and H Bak-Ptasiewicz,Phys. Status Solidi 57, K25 (1980)Google Scholar
  13. [13]
    W Bronger, A Kyas and P Muller,J. Solid State Chem. 70, 262 (1987)CrossRefADSGoogle Scholar
  14. [14]
    D C Johnston, S C Mraw and A J Jacobson,Solid State Commun. 44, 255 (1982)CrossRefADSGoogle Scholar
  15. [15]
    A Mauger, M Escorne, C A Taft, N C Furtado, Z P Arguello and T P Arsenio,Phys. Rev. B30, 5300 (1984)ADSGoogle Scholar
  16. [16]
    C A Taft and M A de Paoli,Chem. Phys. Lett. 68, 94 (1979)CrossRefADSGoogle Scholar
  17. [17]
    H H Schmidtke, R Packroff, W Bronger and P Muller,Chem. Phys. Lett. 150, 129 (1988)CrossRefADSGoogle Scholar
  18. [18]
    R Packroff and H H Schmidtke,Inorg. Chem. 32, 654 (1993)CrossRefGoogle Scholar
  19. [19]
    S K Tiwary and S Vasudevan,Solid State Commun. 101, 449 (1997)CrossRefADSGoogle Scholar
  20. [20]
    C A Taft and M Braga,Phys. Rev. B21, 5802 (1980)ADSGoogle Scholar
  21. [21]
    K D Butcher, G S Matthew and E I Solomon,Inorg. Chem. 29, 2067 (1990)CrossRefGoogle Scholar
  22. [22]
    D Welz and M Nishi,Phys. Rev. B45, 9806 (1992)ADSGoogle Scholar
  23. [23]
    A J Jacobson, M S Whittingham and S M Rich,J. Electrochem. Soc. 126, 887 (1979)CrossRefADSGoogle Scholar
  24. [24]
    F Keffer, inHandbuch der Physik edited by S Flügge (Springer-Verlag, Berlin, 1966) vol. XVIII/2, pp. 1–273, and references thereinGoogle Scholar
  25. [25]
    J B Torrance, Y Tomkiewicz and B D Silverman,Phys. Rev. B15, 4738 (1987)ADSGoogle Scholar
  26. [26]
    D A Cruse and M Gerloch,J. Chem. Soc. Dalton Trans. (1977) 152Google Scholar
  27. [27]
    W V Sweeney and R E Coffman,Biochim. Biophys. Acta 286, 26 (1972)Google Scholar
  28. [28]
    J S Griffith,Theory of transition metal ions (Cambridge University Press, Cambridge, England, 1961)MATHGoogle Scholar
  29. [29]
    C F Putnik, G M Cole Jr., B B Garrett and S L Holt,Inorg. Chem. 15, 826 (1976)CrossRefGoogle Scholar
  30. [30]
    L D de Jongh and A R Miedema,Adv. Phys. 23, 1 (1974)CrossRefADSGoogle Scholar
  31. [31]
    J C Bonner and M E Fisher,Phys. Rev. 135, A640 (1964)Google Scholar
  32. [32]
    T Oguchi,Phys. Rev. 133, A1098 (1964)Google Scholar
  33. [32a]
    T Oguchi and A Honma,J. Appl. Phys. 34, 1153 (1963)CrossRefADSGoogle Scholar
  34. [33]
    J S Smart,Effective field theories of magnetism (Saunders, Philadelphia, 1986)Google Scholar
  35. [34]
    M Nishi, Y Ito and S Funahashi,J. Phys. Soc. Jpn. 52, 2210 (1983)CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 1997

Authors and Affiliations

  • Satish Kumar Tiwary
    • 1
  • Sukumaran Vasudevan
    • 1
  1. 1.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations