Advertisement

Pramana

, Volume 49, Issue 2, pp 213–224 | Cite as

Inhomogeneous cosmological models with heat flux

  • L K Patel
  • Ramesh Tikekar
  • Naresh Dadhich
Research Articles

Abstract

We present a general class of inhomogeneous cosmological models filled with non-thermalized perfect fluid by assuming that the background spacetime admits two space-like commuting Killing vectors and has separable metric coefficients. The singularity structure of these models depends on the choice of the parameters and the metric functions. A number of previously known perfect fluid models follow as particular cases of this general class. Physical and geometrical features of these models are studied and the general expression for temperature distribution is given.

Keywords

Inhomogeneous cosmology models heat flux 

PACS Nos

04.20 98.80 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J M M Senovilla,Phys. Rev. Lett. 64, 2219 (1990)MATHCrossRefADSMathSciNetGoogle Scholar
  2. [2]
    E Ruiz and J M M Senovilla,Phys. Rev. D45, 1995 (1992)ADSMathSciNetGoogle Scholar
  3. [3]
    N Dadhich, R Tikekar and L K Patel,Curr. Sci. 65, 694 (1993)Google Scholar
  4. [4]
    C W Misner,Astrophys. J. 151, 431 (1968)CrossRefADSGoogle Scholar
  5. [5]
    N Caderni and R Fabri,Nuovo Cimento B44, 288 (1978)Google Scholar
  6. [6]
    Y Dang,Gen. Relativ. Gravit. 21, 503 (1989)CrossRefADSGoogle Scholar
  7. [7]
    G Mukherjee,J. Astrophys. Astron. 7, 259 (1986)CrossRefADSGoogle Scholar
  8. [8]
    M Novello and M J Reboucas,Astrophys. J. 225, 719 (1978)CrossRefADSGoogle Scholar
  9. [9]
    D Ray,J. Math. Phys 21, 2797 (1980)CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    M J Reboucas and J A S de Limma,J. Math. Phys. 23, 1547 (1982)CrossRefADSGoogle Scholar
  11. [11]
    M J Reboucas and J A S de Limma,J. Math. Phys. 22, 2699 (1981)MATHCrossRefADSMathSciNetGoogle Scholar
  12. [12]
    M J Reboucas,Nuovo Cimento B67, 120 (1980)ADSMathSciNetGoogle Scholar
  13. [13]
    J M Bradley and E Sveistins,Gen. Relativ. Gravit. 16, 1119 (1984)CrossRefADSGoogle Scholar
  14. [14]
    E Sveistins,Gen. Relativ. Gravit. 17, 521 (1985)CrossRefADSGoogle Scholar
  15. [15]
    L K Patel and N Dadhich,Astrophys. J. 401, 433 (1991)CrossRefADSGoogle Scholar
  16. [16]
    L K Patel and N Dadhich,Class. Quantum Gravit. 10, L85 (1993)Google Scholar
  17. [17]
    N Dadhich, L K Patel and R Tikekar,Pramana — J. Phys. 44, 303 (1995, 1993)ADSGoogle Scholar
  18. [18]
    W Davidson,J. Math. Phys. 32, 1560 (1991)MATHCrossRefADSMathSciNetGoogle Scholar
  19. [19]
    W Davidson,Class. Quantum Gravit. 10, 1843 (1993)MATHCrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 1997

Authors and Affiliations

  • L K Patel
    • 1
  • Ramesh Tikekar
    • 1
  • Naresh Dadhich
    • 1
  1. 1.Inter-University Centre for Astronomy and AstrophysicsGaneshkhind, PuneIndia

Personalised recommendations