, Volume 29, Issue 6, pp 533–542 | Cite as

Bifurcation structure and Lyapunov exponents of a modulated logistic map

  • K P Harikrishnan
  • V M Nandakumaran
Statistical Physics


We have studied the bifurcation structure of the logistic map with a time dependant control parameter. By introducing a specific nonlinear variation for the parameter, we show that the bifurcation structure is modified qualitatively as well as quantitatively from the first bifurcation onwards. We have also computed the two Lyapunov exponents of the system and find that the modulated logistic map is less chaotic compared to the logistic map.


Modulated logistic map period-doubling bifurcation structure Lyapunov exponents 


05·40 02·50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bai-Lin H 1984Chaos—A reprint collection (Singapore: World Scientific)Google Scholar
  2. Benettin G, Galgani L and Strelcyn J M 1976Phys. Rev. A14 2338ADSGoogle Scholar
  3. Bountis T C 1981Physica D3 577ADSMathSciNetGoogle Scholar
  4. Brun E, Derighetti B, Holzner R and Meier D 1984 inOptical bistability (Eds) C M Bowden, H M Gibbs and S L McCall (New York: Plenum) p. 127Google Scholar
  5. Derrida B, Gervois A and Pomeau Y 1979J. Phys. A12 269ADSMathSciNetGoogle Scholar
  6. Feigenbaum M J 1978J. Stat. Phys. 19 25MATHCrossRefADSMathSciNetGoogle Scholar
  7. Feigenbaum M J 1979J. Stat. Phys. 21 669MATHCrossRefADSMathSciNetGoogle Scholar
  8. Giesel T, Nierwetberg J and Keller J 1981Phys. Lett. A86 75ADSGoogle Scholar
  9. Greene J M 1968J. Math. Phys. 9 760MATHCrossRefADSMathSciNetGoogle Scholar
  10. Huberman B A and Rudnick J 1980Phys. Rev. Lett. 45 154CrossRefADSMathSciNetGoogle Scholar
  11. Kapral R and Mandel P 1985Phys. Rev. A32 1076ADSGoogle Scholar
  12. Lichtenberg A J and Lieberman M A 1983Regular and stochastic motion (New York: Springer-Verlag)MATHGoogle Scholar
  13. Mandel P and Erneux T 1984Phys. Rev. Lett. 53 1818CrossRefADSGoogle Scholar
  14. May R M 1976Nature 261 459CrossRefADSGoogle Scholar
  15. Midavaine T, Dangoisse D and Glorieux P 1985Phys. Rev. Lett. 55 1989CrossRefADSGoogle Scholar
  16. Shuster H G 1984Deterministic chaos—An introduction (Weinberg: Physik-Verlag)Google Scholar
  17. Tomita K 1984 inChaos and statistical methods (Ed) Kuromoto Y (New York: Springer-Verlag) p. 2Google Scholar
  18. Tredicce J R, Abraham N B, Puccioni G P and Avecchi F T 1985Opt. Commun. 55 131CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 1987

Authors and Affiliations

  • K P Harikrishnan
    • 1
  • V M Nandakumaran
    • 1
  1. 1.Department of PhysicsCochin University of Science and TechnologyCochinIndia

Personalised recommendations