Effects of composition and structure of alginates on adsorption of divalent metals

  • Zheng Nai-yu
  • Zhang Yan-xia
  • Fan Xiao
  • Han Li-jun


Results of a series of experiments (on the adsorption of divalent metal ions by dried alginic acid, Na and Ca alginates of different composition and block structure) conducted in this systematic study of the effects of the composition and structure of alginates on the static adsorption equilibrium of divalent metal ions indicate that the properties of alginate adsorption to divalent metal ions are highly different, depending not only on the cations used, but also on the form and structure of the alginates. There is close correlation between the adsorption properties and the structure of the alginates. The selectivity coefficient of Na alginate for Cd-Sr ion exchange tends to increase with the increase of theM/G ratio in alginate, whereas the adsorption capacity of Ca alginate for Cu2+ ion decrease with the increase of the G-block or the average length of the G-block\((\bar N_G )\) and the total adsorption capacity of alginic acid is found to vary in the same order as theF MM(diad frequency) in alginate in the mixed solution of Sr2+, Ba2+ and Cd2+.

Key words

composition structure adsorption ion exchange divalent metal alginate seaweed 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chapman, V. J., 1990. Seaweeds and Their Uses. (3rd ed.), Chapman & Hall Ltd. U. S. A. pp. 194–219.Google Scholar
  2. Cozzi, D., Disideri, P. G. & Lepri, L., 1969. Mechanism of ion exchange with alginic acid.J. Chromatogr.,40(1): 130–7.CrossRefGoogle Scholar
  3. Grant, G. T., Morries, E. R. & Rees, D. A. et al. 1973. Biological interactions between polysaccharides and divalent cations: The egg-box model.FEBS Letters 32(1): 195–198.CrossRefGoogle Scholar
  4. Grasdalen, H., 1983. High-field,1H-NMR spectroscopy of alginate: sequential structure and linkage conformations.Carbohydr. Res,118: 255–260.CrossRefGoogle Scholar
  5. Grasdalen, H., Larsen, B. & Smidsrϕd, O., 1979. A P. M. R. study of the composition and sequence of uronate residues in alginates.Carbohydr. Res.,68: 23–31.CrossRefGoogle Scholar
  6. Grasdalen, H., Larsen, B. & Smidsrϕd, O., 1981.13C-NMR studies of monomeric composition and sequence in alginate.Carbohydr. Res,89: 171–191.CrossRefGoogle Scholar
  7. Haug, A., 1961. The affinity of some divalent metals to different types of alginates.Acta Chem. Scand.,15: 1794–1795.Google Scholar
  8. Haug, A & Smidsrϕd, O., 1967. Stronium-Calcium selectivity of alginates.Nature.215 (5102): 757.CrossRefGoogle Scholar
  9. Ji Minghou, Wang Yujun & Xu Zuhong et al., 1983. Chemical components of alginic acid in some Chinese brown seaweeds. Proc. Joint China-U. S. Phycology Symp., Science Press, Beijing, China: 393–399.Google Scholar
  10. Kvam, B. J., Grasdalen, H., Smidsrϕd, O. & Anthonsen, T., 1986. NMR studies of the interaction of metal ions with poly (1,4-hexuronates). IV. Lanthanide (III) complexes of sodium (Methyl-α-D-galactopyranosid) uronate and sodium (phenylmethyl-α-D-galactopyranosid) uronate.Acta Chem. Scand., B40: 735–739.Google Scholar
  11. Ludwig, B. J., Holfell, W. T. & Berger, F. M., 1952. Cation-exchange properties of alginic acid.Proc. Soc. Explt. Biol. Med.,79: 176–179.Google Scholar
  12. Mchugh, D. J., 1987. Production and utilization of products from commercial seaweeds. FAO of the UN. Rome. pp. 51–96.Google Scholar
  13. Mongar, J. L. & Wassermann, A., 1952. Adsorption of electrolyte by alginate gels without and with cation exchange.J. Chem. Soc., 492–497.Google Scholar
  14. Morris, E. R., Rees, D. A., & Thom, D., 1980. Characterisation of alginate composition and block-structure by circular dichroism.Carbohydr. Res,81: 305–314.CrossRefGoogle Scholar
  15. Seale, R., Morries, E. R. & Rees, D. D., 1982. Interaction of alginates with univalent cations.Carbohydr. Res. 110: 101–112.CrossRefGoogle Scholar
  16. Smidsrϕd, O. & Haug, A., 1968. Dependence upon uronic acid composition of some ion exchange properties of alginate.Acta Chem. Scand.,22: 1989–1997.Google Scholar
  17. Smidsrϕd, O. & Haug, A., 1972. Dependence upon the gel-sol state of the ion-exchange properties of alginates.Acta Chem. Scand.,26: 2063–2074.CrossRefGoogle Scholar
  18. Smidsrϕd, O. & Skjak-Braek, G., 1990. Alginate as immobilization matrix for cells.Trends in Biotechnology 8: 71–78.CrossRefGoogle Scholar
  19. Takahashi, T. & Emura, S., 1958. The separation and determination of metallic ions using alginic acid as an ion exchanger.Bunseki Kagaku,7: 568–571.Google Scholar
  20. Takahashi, T. & Miyake, S., 1959. The separation of thorium (IV) and cerium (III) ions by using alginat ase cation exchange.Bull. Chem. Soc. Japan. 32: 878–9.CrossRefGoogle Scholar
  21. Thom, D., Grant, G. T. & Morries, E. al., 1982. Characterization of cation binding and gelation of polyuronates by circular dichroism.Carbohydr. Res. 100: 29–42.CrossRefGoogle Scholar
  22. Zheng Naiyu, Zhang Yanxia & Fan Xiao. 1992. Studies on the composition and sequential structure of uronate residues in alginates from Chinese brown algaeLaminaria andSargassum.Oceanologia et Limnologia Sinica,23(4): 445–453 (in Chinese with English abstract)Google Scholar

Copyright information

© Science Press 1994

Authors and Affiliations

  • Zheng Nai-yu
    • 1
  • Zhang Yan-xia
    • 1
  • Fan Xiao
    • 1
  • Han Li-jun
    • 1
  1. 1.Institute of OceanologyChinese Academy of SciencesQingdao

Personalised recommendations