Advertisement

Approximation Theory and its Applications

, Volume 18, Issue 4, pp 31–47 | Cite as

Boundedness of generalized fractional integral operators

  • Tang Canqin
  • Yang Dachun
  • Zhang Pu
Article
  • 14 Downloads

Abstract

The authors introduce a new kind of fractional integral operators, namely, the so called (ϕ, N)-type fractional integral operators and discuss their boundedness on the Hardy spaces, the weak Hardy spaces and the Herz-type Hardy spaces.

Keywords

Hardy Space Fractional Integral Operator Weak Hardy Space Atom Characterization Nonnegative Nondecreasing Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N. J., 1970.MATHGoogle Scholar
  2. [2]
    Taibleson, M. H. and Weiss, G., The Molecular Characterization of Certain Hardy Spaces, Astérisque, 77(1980), 67–149.MathSciNetMATHGoogle Scholar
  3. [3]
    Yabuta, K., Generalizations of Calderón-Zygmund Operators, Studia Math., 82 (1985), 17–31.MathSciNetMATHGoogle Scholar
  4. [4]
    Quek, T. S. and Yang, D., Calderón-Zygmund Operators on Weighted Weak Hardy Spaces on Rn, Acta. Math. Sinica (new Ser.), to Appear.Google Scholar
  5. [5]
    Lu, S. and Yang, D., The Weighted Herz-Type Hardy Spaces and its Applications, Sci. in China (Ser. A), 38(1995), 662–673.MathSciNetMATHGoogle Scholar
  6. [6]
    Hu, G., Lu, S. and Yang, D., The Weak Herz Spaces, J. of Beijing Normal University (Nat. Sci.), 33(1997), 27–34.MathSciNetMATHGoogle Scholar
  7. [7]
    Hu, G., Lu, S. and Yang, D., The Applications of Weak Herz Spaces, Adv. in Math. (China), 26(1997), 417–428.MathSciNetMATHGoogle Scholar
  8. [8]
    Lu, S. and Yang, D., Hardy-Littlewood-Sobolev Theorems of Fractional Integration on Herz-Type Spaces and Its Applications, Canad. J. of Math., 48(1996), 363–380.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Hernández, E. and Yang, D., Interpolation of Herz-Type Hardy Spaces, Illinois J. of Math., 42(1998), 564–581.MATHGoogle Scholar
  10. [10]
    Lu, S., Four Lectures on RealH p Spaces, World Scientific, Singapore, 1995.CrossRefMATHGoogle Scholar
  11. [11]
    Fefferman, R. and Soria, F., The Space WeakH 1, Studia Math., 85 (1987), 1–16.MathSciNetGoogle Scholar
  12. [12]
    Liu, H., The WeakH p Spaces on Homogeneous Groups, in Lecture Notes in Math., No. 1494, Springer-Verlag, Berlin, 1991, 113–118.Google Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  1. 1.Department of MathematicsChangde Normal UniversityChangde, Hunan ProvinceP. R. China
  2. 2.Department of MathematicsBeijing Normal UniversityBeijingP. R. China
  3. 3.Department of Mathematics Xixi CampusZhejiang UniversityHangzhouP. R. China

Personalised recommendations