Spline regularization of numerical inversion of Mellin transform

  • M. Iqbal


A method is described for inverting the Mellin transform which uses an expansion in Laguerre polynomials and converts the Mellin transform to the Laplace transform, then the Laplace transform is converted to the first kind convolution integral equation by a suitable substitution.

The integral equation so obtained is an ill-posed problem and we use the spline regularization to solve it. The performance of the method is illustrated by the inversion of the test functions available in the literature [J. Inst. Math. & Appl. 20 (1977), p. 73], [J. Math. Comp. 53 (1989), p. 589], [J. Sci. Stat. Comp. 4 (1983), p. 164]. The effectiveness of the method is shown by results obtained demonstrated by means of tables and diagrams.


Laplace Transform Laguerre Polynomial Numerical Inversion Spline Method Convolution Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aki, K. and Richards, G., Quantitative Seismology: Theory and Methds', Freeman, San Francisco, (1980).Google Scholar
  2. [2]
    Ang, D. D. et al, Complex Variable and Regularization Methods of Inversion of the Laplace Transform, J. Math. Comp. 53(1989), 589–608.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Brianzi, P., A Criterion for the Choice of a Sampling Parameter in the Problem of Laplace Transform Inversion, J. Inv. Probls. 10(1994), 55–61.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Budinger, T. F., Physical Attributes of Single-Photon Tomography, J. Nucl. Med., 21 (1980), 6.Google Scholar
  5. [5]
    Davies, B. and Martin, B., Numerical Inversion of the Laplace Transform, J. Comp. Physics, 33(1979) No. 2, 1–32.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    De Hoog, F. R., Review of Fredholm Equations of the First Kind, In the Application and Numerical Solutions of Interal Equations, Editors, R. S. Anderssen, F. R. de Hoog and M. A. Lucas, Published by Sijthoff and Noordhoff (1980).Google Scholar
  7. [7]
    Essah, W. A. and Delves, L. M., On the Numerical Inversion of the Laplace Transform, J. Inv. Problems, 4 (1988), 705–724.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Franzone, P. C. et al., An Approach to Inverse Calculation of Epi-cardiol Potentials from Body Surface Mpas, J. Adv. Cardiol 21(1977), 167–170.Google Scholar
  9. [9]
    Gautschi, W., Attenuation factor in practical Fourier Analysis, Numer. Math., 18 (1972), 373–400.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Gelfat, V. I., Kosarev, E. L. and Podolyak, E. R., Programs for Signal Recovery from Noisy data Using the Maximum Likelihood Principle, Computer Physics Communications 74 (1993), 335–348.CrossRefGoogle Scholar
  11. [11]
    Grunbaum, F. A., Remark on the Phase Problem in Crystallography, Proc. Nat. Acad. Sci. U.S.A., 72(1975), 1699–1701.CrossRefMathSciNetGoogle Scholar
  12. [12]
    Jaynes, E. T., Papers on Problability, Statistics and Statistical Physics, Synthese Library (1983).Google Scholar
  13. [13]
    Karavaris, C. and Seinfeld, J. H., Identification of Parameters in Distributed Parameter Systems by Regularization, SIAM. J. Control. Optim., 23 (1985), 217–241.CrossRefMathSciNetGoogle Scholar
  14. [14]
    McWhirter, J. G. and Pike, E. R., On the Numerical Inversion of the Laplace Transform and Similar FI Equations of the First Kind, J. Phys. A, 11(1978), 1729–1745.CrossRefMathSciNetGoogle Scholar
  15. [15]
    Mendelsohn, J. and Rice, J., Deconvolution of Micro-Fluorometric Histograms with B-Splines, J. Amer. Statist. Assoc., 77(1982), 748–753.CrossRefGoogle Scholar
  16. [16]
    Papoulis, A., A New Method of Inversion of Laplace Transform, Quarterly Appl. Math., 14 (1956), 405–414.MathSciNetGoogle Scholar
  17. [17]
    Pennisi, L.L., Elements of Complex Variables, McGraw-Hill, New York (1976).MATHGoogle Scholar
  18. [18]
    Smith, W., The Retrieval Atmospheric Profiles From VAS Geostationary Radiance Observation, J. Atmospheruc Sci., 40(1983), 2025–2035.CrossRefGoogle Scholar
  19. [19]
    Snedon, J.N., The Use of Integral Transforms, McGraw-Hill, New York, (1972).Google Scholar
  20. [20]
    Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis, Springer-Verlag, (1978).Google Scholar
  21. [21]
    Szego, G., Orthogonal Polynomials, American Math. Society Colloq. Publications, 23 (AMS Providence, RI 3rd edition) (1967).Google Scholar
  22. [22]
    Talbot, A., The Accurate Numerical Inversion of Laplace Transform. J. Inst. Maths. Applics, 23(1979), 97–120.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    Theocaris, P. and Chrysakis, A. C., Numerical Inversion of the Mellin Transform. J. Math. and Appl., 20(1977), 73–83.MATHMathSciNetGoogle Scholar
  24. [24]
    Tikhonov, A. N., Solutions of Incorrectly Formulated Problems and Regularization Method, Soviet Math. Dokl., 4(1963), 1035–1038.Google Scholar
  25. [25]
    Tikhonov, A. N and Arsenin, V. Y., Solutions of Ill-Posed Problems, (Translated From Russian) Wiley Publishing Co. New York (1977).MATHGoogle Scholar
  26. [26]
    Varah, J. M., Pitfalls in the Numerical Solution of Linear Ill-Posed Problems, SIAM J. Sci. Stat. Comp., 4(1983), 164–176.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    Wahba, G., Practical Approximation Solutions to Linear Operator Equations when the Data are Noisy, SIAM J. Numer. Anal., 14(1977), 651–677.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2000

Authors and Affiliations

  1. 1.Department of Mthematical SciencesKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations