Skip to main content
Log in

Spline regularization of numerical inversion of Mellin transform

  • Published:
Approximation Theory and its Applications

Abstract

A method is described for inverting the Mellin transform which uses an expansion in Laguerre polynomials and converts the Mellin transform to the Laplace transform, then the Laplace transform is converted to the first kind convolution integral equation by a suitable substitution.

The integral equation so obtained is an ill-posed problem and we use the spline regularization to solve it. The performance of the method is illustrated by the inversion of the test functions available in the literature [J. Inst. Math. & Appl. 20 (1977), p. 73], [J. Math. Comp. 53 (1989), p. 589], [J. Sci. Stat. Comp. 4 (1983), p. 164]. The effectiveness of the method is shown by results obtained demonstrated by means of tables and diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aki, K. and Richards, G., Quantitative Seismology: Theory and Methds', Freeman, San Francisco, (1980).

    Google Scholar 

  2. Ang, D. D. et al, Complex Variable and Regularization Methods of Inversion of the Laplace Transform, J. Math. Comp. 53(1989), 589–608.

    Article  MATH  MathSciNet  Google Scholar 

  3. Brianzi, P., A Criterion for the Choice of a Sampling Parameter in the Problem of Laplace Transform Inversion, J. Inv. Probls. 10(1994), 55–61.

    Article  MATH  MathSciNet  Google Scholar 

  4. Budinger, T. F., Physical Attributes of Single-Photon Tomography, J. Nucl. Med., 21 (1980), 6.

    Google Scholar 

  5. Davies, B. and Martin, B., Numerical Inversion of the Laplace Transform, J. Comp. Physics, 33(1979) No. 2, 1–32.

    Article  MATH  MathSciNet  Google Scholar 

  6. De Hoog, F. R., Review of Fredholm Equations of the First Kind, In the Application and Numerical Solutions of Interal Equations, Editors, R. S. Anderssen, F. R. de Hoog and M. A. Lucas, Published by Sijthoff and Noordhoff (1980).

  7. Essah, W. A. and Delves, L. M., On the Numerical Inversion of the Laplace Transform, J. Inv. Problems, 4 (1988), 705–724.

    Article  MATH  MathSciNet  Google Scholar 

  8. Franzone, P. C. et al., An Approach to Inverse Calculation of Epi-cardiol Potentials from Body Surface Mpas, J. Adv. Cardiol 21(1977), 167–170.

    Google Scholar 

  9. Gautschi, W., Attenuation factor in practical Fourier Analysis, Numer. Math., 18 (1972), 373–400.

    Article  MATH  MathSciNet  Google Scholar 

  10. Gelfat, V. I., Kosarev, E. L. and Podolyak, E. R., Programs for Signal Recovery from Noisy data Using the Maximum Likelihood Principle, Computer Physics Communications 74 (1993), 335–348.

    Article  Google Scholar 

  11. Grunbaum, F. A., Remark on the Phase Problem in Crystallography, Proc. Nat. Acad. Sci. U.S.A., 72(1975), 1699–1701.

    Article  MathSciNet  Google Scholar 

  12. Jaynes, E. T., Papers on Problability, Statistics and Statistical Physics, Synthese Library (1983).

  13. Karavaris, C. and Seinfeld, J. H., Identification of Parameters in Distributed Parameter Systems by Regularization, SIAM. J. Control. Optim., 23 (1985), 217–241.

    Article  MathSciNet  Google Scholar 

  14. McWhirter, J. G. and Pike, E. R., On the Numerical Inversion of the Laplace Transform and Similar FI Equations of the First Kind, J. Phys. A, 11(1978), 1729–1745.

    Article  MathSciNet  Google Scholar 

  15. Mendelsohn, J. and Rice, J., Deconvolution of Micro-Fluorometric Histograms with B-Splines, J. Amer. Statist. Assoc., 77(1982), 748–753.

    Article  Google Scholar 

  16. Papoulis, A., A New Method of Inversion of Laplace Transform, Quarterly Appl. Math., 14 (1956), 405–414.

    MathSciNet  Google Scholar 

  17. Pennisi, L.L., Elements of Complex Variables, McGraw-Hill, New York (1976).

    MATH  Google Scholar 

  18. Smith, W., The Retrieval Atmospheric Profiles From VAS Geostationary Radiance Observation, J. Atmospheruc Sci., 40(1983), 2025–2035.

    Article  Google Scholar 

  19. Snedon, J.N., The Use of Integral Transforms, McGraw-Hill, New York, (1972).

    Google Scholar 

  20. Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis, Springer-Verlag, (1978).

  21. Szego, G., Orthogonal Polynomials, American Math. Society Colloq. Publications, 23 (AMS Providence, RI 3rd edition) (1967).

  22. Talbot, A., The Accurate Numerical Inversion of Laplace Transform. J. Inst. Maths. Applics, 23(1979), 97–120.

    Article  MATH  MathSciNet  Google Scholar 

  23. Theocaris, P. and Chrysakis, A. C., Numerical Inversion of the Mellin Transform. J. Math. and Appl., 20(1977), 73–83.

    MATH  MathSciNet  Google Scholar 

  24. Tikhonov, A. N., Solutions of Incorrectly Formulated Problems and Regularization Method, Soviet Math. Dokl., 4(1963), 1035–1038.

    Google Scholar 

  25. Tikhonov, A. N and Arsenin, V. Y., Solutions of Ill-Posed Problems, (Translated From Russian) Wiley Publishing Co. New York (1977).

    MATH  Google Scholar 

  26. Varah, J. M., Pitfalls in the Numerical Solution of Linear Ill-Posed Problems, SIAM J. Sci. Stat. Comp., 4(1983), 164–176.

    Article  MATH  MathSciNet  Google Scholar 

  27. Wahba, G., Practical Approximation Solutions to Linear Operator Equations when the Data are Noisy, SIAM J. Numer. Anal., 14(1977), 651–677.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Iqbal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iqbal, M. Spline regularization of numerical inversion of Mellin transform. Approx. Theory & its Appl. 16, 1–16 (2000). https://doi.org/10.1007/BF02845223

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02845223

Keywords

Navigation