Hypergroupes de typeC

  • Yves Sureau


Some results on the right hypergroups of typeC are given. This class of hypergroups containD-hypergroups and cogroups (Eaton and Utumi). Connections between groups orD-hypergroups and right hypergroups of typeC are studied. Lastly all right hypergroups of typeC of cordinality smaller than five are determined (they are allD-hypergroups).


Parmi Cette Condition Strong Normality Soit Encore Obtient Donc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Comer S.D.,Polygroups derived from cogroups, J. Algebra,89 (1984), 397–405.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Corsini P.,Contributo alla teoria degli ipergruppi, Atti. Soc. Pelor. Sc. Mat. Fis. Nat. (26) (1980).Google Scholar
  3. [3]
    Corsini P., Sureau Y.,Sur les sous-hypergroupes d’un hypergroupe, Riv. di Mat. Pura ed App., n. 1, (1987), 7–21.MathSciNetMATHGoogle Scholar
  4. [4]
    Drbohlav K.,Gruppenartige Multigruppen, Czech. Mat. J. Prague7, (1957).Google Scholar
  5. [5]
    Dresher M., Ore O.,Theory of Multigroups, Amer. Jour. of Math.60 (1938) 705–733.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    Eaton J.E.,Theory of cogroups, Duke Math. J.6 (1940) 101–107.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Freni D.,Hypergroupes cambistes—hypergroupes de type U—Application à la théorie de la dimension et à l’homologue non abélienne, Thèse Université Clermont II (1985).Google Scholar
  8. [8]
    Haddad L., Sureau Y.,Les cogroupes et les D-hypergroupes, J. Algebra118 (1988).Google Scholar
  9. [9]
    Haddad L., Sureau Y.,Les cogroupes et la construction de Utumi, Pacific J. Math.145 (1990), 17–58.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    Koskas M.,Groupoïdes, demi-hypergroupes et hypergroupes, J. Math. Pures et App.49 (1970), 155–192.MathSciNetMATHGoogle Scholar
  11. [11]
    Krasner M.,La caractérisation des hypergroupes de classes et le problème de Schreier dans ces hypergroupes, C.R. Acad. Sci. Paris212 (1941), 948–950.MathSciNetMATHGoogle Scholar
  12. [12]
    Sureau Y.,Contribution à la théorie des hypergroupes et hypergroupes opérant transitivement sur un ensemble, Thèse Université Clermont II (1980).Google Scholar
  13. [13]
    Utumi Y.,On hypergroups of group right cosets, Osaka, Math. J.1 (1949).Google Scholar

Copyright information

© Springer 1991

Authors and Affiliations

  • Yves Sureau
    • 1
  1. 1.Départment de MathématiquesUniversité Blaise PascalAubiere CedexFrance

Personalised recommendations