Advertisement

Liquid structure of vanadium tetrachloride from neutron diffraction study

  • R. V. Gopala Rao
  • B. M. Satpathy
Inorganic and Analytical
  • 10 Downloads

Abstract

Assuming the separation of the intermolecular scattering function into the radial and angular parts and using Egelstaffet al’s orientational model for tetrachlorides, the structure of liquid vanadium tetrachloride has been studied. It has been observed that such a separation is approximate for this liquid and the introduction of a third correction term is required to account for the molecular structure function. The chlorine-chlorine partial structure and effective angleaveraged intermolecular chlorine-chlorine potential in the liquid has been evaluated. Without taking the third correction term, introduced to generate theoretically the molecular structure function, the centre structure function has been obtained in an approximate way from the experimentally observed molecular structure function and from it the centre radial distribution function, centre direct correlation function and the angle-averaged vanadium-vanadium effective potential has been evaluated.

Keywords

Liquid structure vanadium tetrachloride intramolecular function intermolecular scattering function orientational correlation partial structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Egelstaff P A, Page D I and Powles J G 1971Mol. Phys. 20 881CrossRefGoogle Scholar
  2. Gibson I P and Dore J C 1979Mol. Phys. 37 1218CrossRefGoogle Scholar
  3. Gopala Rao R V and Joardar R N 1978aPhys. Lett. A67 71Google Scholar
  4. Gopala Rao R V and Joardar R N 1978b Unpublished workGoogle Scholar
  5. Gopala Rao R V and Joardar R N 1979J. Phys. C28 4129Google Scholar
  6. Gopala Rao R V and Joardar R N 1980Mol. Phys. 40 309CrossRefGoogle Scholar
  7. Gopala Rao R V and Murty A K 1974J. Phys. C7 2249Google Scholar
  8. Gopala Rao R V and Murty A K 1976Indian J. Phys. 50 1Google Scholar
  9. GranActa J G, Stanton G W, Clarke J H and Dore J C 1979Mol. Phys. 37 1297CrossRefGoogle Scholar
  10. Lowden L J and Chandler D 1973J. Chem. Phys. 59 6587CrossRefGoogle Scholar
  11. Morino Y and Uehara H 1966J. Chem. Phys. 45 4543CrossRefGoogle Scholar
  12. Murad S, Evans D J, Gubbins K E, Streett W B and Tildesley D J 1979Mol. Phys. 37 725CrossRefGoogle Scholar
  13. Murad S and Gubbins K E 1980Mol. Phys. 39 271CrossRefGoogle Scholar
  14. Narten A H 1976J. Chem. Phys. 65 573CrossRefGoogle Scholar
  15. Page D I and Powles J G 1971Mol. Phys. 21 901CrossRefGoogle Scholar
  16. Powles J G 1973Adv. Phys. 22 1CrossRefGoogle Scholar
  17. Sandler S I, Das Gupta A and Steele W A 1974J. Chem. Phys. 61 1326CrossRefGoogle Scholar
  18. Suzuki K and Egelstaff P A 1974Can. J. Phys. 52 241Google Scholar
  19. van Tricht J B 1977aJ. Chem. Phys. 66 85CrossRefGoogle Scholar
  20. van Tricht J B 1977b Ph.D. Thesis, Neutron diffraction study of carbontetrachloride, silicium-tetrachloride, titanium tetrachloride and tintetrachloride in the liquid state at 295 K. Delft UniversityGoogle Scholar
  21. Weis J J and Levesque D 1976Phys. Rev. 13 450CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1982

Authors and Affiliations

  • R. V. Gopala Rao
    • 1
  • B. M. Satpathy
    • 1
  1. 1.Physical Chemistry SectionJadavpur UniversityCalcuttaIndia

Personalised recommendations