Red edge excitation and proton association in the excited state of acridine

  • P. Gangola
  • N. B. Joshi
  • D. D. Pant
Physical and Theoretical


A comprehensive study of acridine spectra with variation of pH, wave length of excitation, deuteration of the solvent, etc., has been made. The excited state protonation of acridine is found extra-ordinarily excitation wavelength sensitive near the red edge of the first absorption band. The proton association takes place very fast (K PT ~ 1010 sec-1) on excitation at the red edge of the first absorption band (ree) and acridinium emission is observed while it is slow on short wavelength excitation (swe). The reaction rate slows down at lower temperature which is indicated by a delay in the initiation of the effect by ~ 8 nm on ree. The acridinium type emission with ree at 80 K shows that proton tunnelling is the chief mechanism of proton transfer. The quantum yields are also found wavelength dependent. Contrary to previous observations acridinium ion also shows a ree shift at 80 K.


Red edge excitation proton transfer acridine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avouris P, Gelbart W M and El-Sayed M A 1977Chem. Rev. 77 793CrossRefGoogle Scholar
  2. Chen R F 1967Anal. Biochem. 19 374CrossRefGoogle Scholar
  3. Fletcher N 1968J. Phys. Chem. 72 742CrossRefGoogle Scholar
  4. Freed K F 1976Top. Appl. Phys. 15 (ed.) F K Fong p. 168Google Scholar
  5. Gangola P, Joshi N B and Pant D D 1977Chem. Phys. Lett. 51 144CrossRefGoogle Scholar
  6. Gangola, P, Joshi N B and Pant D D 1979Chem. Phys. Lett. 60 329CrossRefGoogle Scholar
  7. Itoh K and Azumi T 1975J. Chem. Phys. 62 3431CrossRefGoogle Scholar
  8. Jacon M, Lardeaux C, Lopez-Delgado R and Tramer A 1977Chem. Phys. 24 145CrossRefGoogle Scholar
  9. Kellmann A 1977J. Phys. Chem. 81 1195CrossRefGoogle Scholar
  10. Landner S J and Becker R S 1963J. Phys. Chem. 67 2481CrossRefGoogle Scholar
  11. Lowdin O P 1965Adv. Quantum Chem. 2 213CrossRefGoogle Scholar
  12. Mataga N, Kaifu Y and Koizumi M 1956Bull. Chem. Soc. Jpn. 29 373CrossRefGoogle Scholar
  13. Mataga N, Kaifu Y and Koizumi M 1957Bull. Chem. Soc. Jpn. 30 368CrossRefGoogle Scholar
  14. Pande U, Joshi N B and Pant D D 1980Chem. Phys. Lett. 72 209CrossRefGoogle Scholar
  15. Rice S A 1974Excited states 2 (ed.) E C Lim (New York: Academic Press) p. 232Google Scholar
  16. Rudik K I and Pikulik L G 1971Opt. Spectrosc. 30 147Google Scholar
  17. Shah J, Joshi N B and Pant D D 1980Curr. Sci. 49 609Google Scholar
  18. Shapiro S L and Winn K R 1980J. Chem. Phys. 73 5958CrossRefGoogle Scholar
  19. Valeur B and Weber G 1978J. Chem. Phys. 69 2393CrossRefGoogle Scholar
  20. Weber G 1960Biochem. J. 76 335Google Scholar
  21. Weber G and Shinitzky M 1970Proc. Natl. Acad. Sci. (USA.) 65 823CrossRefGoogle Scholar
  22. Weller A 1957Z. Electrochem. 61 956Google Scholar
  23. Whitten D G and Lee Y J 1971J. Am. Chem. Soc. 93 961CrossRefGoogle Scholar
  24. Zundal G 1976The hydrogen bond II (eds.) P Schuster, G Zundal and C Sandorfy (Amsterdam: North Holland Pub. Co.) p. 283Google Scholar

Copyright information

© Indian Academy of Sciences 1982

Authors and Affiliations

  • P. Gangola
    • 1
  • N. B. Joshi
    • 1
  • D. D. Pant
    • 1
  1. 1.Department of Physics, DSB CollegeKumaun UniversityNaini TalIndia

Personalised recommendations