Advertisement

Semilinear hemivariational inequalities at resonance

  • Gasiński L. 
  • Papageorgiou N. S. 
Article
  • 25 Downloads

Abstract

In this paper we examine a semilinear hemivariational inequality at resonance in the first eigenvalue λ1 of (−Δ,H 0 1 (Z)). We prove two existence theorems for such problems. Our approach is variational and is based on the nonsmooth critical point theory of Chang, which uses the subdifferential calculus of Clarke for locally Lipschitz functions.

Key words and phrases

Hemivariational inequality at resonance locally Lipschitz functional Clarke subdifferential eigenvalue eigenfunction nonsmooth Palais-Smale condition coercive function anticoercive function mountain pass theorem saddle point theorem critical point 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ambrosetti A., Rabinowitz P. H.,Dual Variational Methods in Critical Point Theory and Applications, J. Funct. Anal.,14 (1973), 349–381.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Brezis H.,Analyse Fonctionnelle. Théorie et Applications, Masson, Paris, (1983).MATHGoogle Scholar
  3. [3]
    Chang K. C.,Variational Methods for Nondifferentiable Functionals and their Applications to Partial Differential Equations, J. Math. Anal. Appl.,80 (1981), 102–129.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Clarke F. H.,Optimization and Nonsmooth Analysis, Wiley, New York, (1983).MATHGoogle Scholar
  5. [5]
    Gasiński L., Papageorgiou N. S.,Existence of Solutions and of Multiple Solutions for Eigenvalue Problems of Hemivariational Inequalities, Adv. Math. Sci. Appl., to appear.Google Scholar
  6. [6]
    Goeleven D., Motreanu D. Panagiotopoulos P. D.,Eingevalue Problems for Varational-Hemivariational Inequalities at Resonance, Nonlin. Anal.,33 (1998), 161–180.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Hu S., Papageorgiou N. S.,Handbook of Multivalued Analysis. Volume I: Theory, Kluwer, Dordrecht, The Netherlands, (1997).MATHGoogle Scholar
  8. [8]
    Kesavan S.,Topics in Functional Analysis and Applications, Wiley, New York, (1989).MATHGoogle Scholar
  9. [9]
    Lebourg G.,Valeur moyenne pour gradient généralise, CRAS Paris,281 (1975), 795–797.MATHMathSciNetGoogle Scholar
  10. [10]
    Naniewicz Z., Panagiotopoulos P. D.,Mathematical Theory of Hemivariational Inequalities and Applications, Marcel-Dekker, New York, (1995).Google Scholar
  11. [11]
    Panagiotopoulos P. D.,Hemivariational Inequalities. Applications to Mechanics and Engineering, Springer-Verlag, New York, (1993).Google Scholar
  12. [12]
    Rabinowitz P. H.,Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS, Regional Conf. Series in Math., AMS Providence, R.I. (1986).Google Scholar

Copyright information

© Springer 2001

Authors and Affiliations

  • Gasiński L. 
    • 1
  • Papageorgiou N. S. 
    • 2
  1. 1.Institute of Computer ScienceJagiellonian UniversityCracowPoland
  2. 2.Department of MathematicsNational Technical UniversityAthensGreece

Personalised recommendations