Rendiconti del Circolo Matematico di Palermo

, Volume 36, Issue 3, pp 343–389 | Cite as

Hilbert's “Grundlagen der Geometrie”

  • Garrett Birkhoff
  • Mary Katherine Bennett


A careful analysis is made, in the light of subsequent developments, of the background, content, aim, and influence of the ten German editions of Hilbert's “Grundlagen der Geometrie”. Especial attention is given to the sources of Hilbert's ideas, the critical reactions of contemporary geometers to the first edition, the latter's connections with Hilbert's famous problems, and its role as a model for later axiomatic approaches tho the foundations of mathematics and mathematical physics.


Projective Geometry Division Ring Hyperbolic Plane Geometric Algebra Symbolic Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Arc] Raymond C., Archibald.,Remarks on Klein's Famous Problems of Elementary Geometry, Am. Math. Montly21 (1914), 247–59.CrossRefGoogle Scholar
  2. [Art] Emil Artin.,Geometric Algebra, Interscience, 1957.Google Scholar
  3. [B-B] Birkhoff G., Bennett M.K.,Felix Klein and his Erlanger Programm, inHistory and Philosophy of Modern Mathematics, (W. Aspray and P. Kitcher, eds.) U. of Minn. Press, 1988.Google Scholar
  4. [Ba] Rouse Ball W.W.,A Short Account of the History of Mathematics, 3rd ed, Macmillan, ca 1900.Google Scholar
  5. [Be] Bell E.T.,The Development of Mathematics, McGraw-Hill, 1940.Google Scholar
  6. [Ben] Bennett M.K.,Biatomic Lattices, in Algebra Universalis, 1988.Google Scholar
  7. [Bo] Carl B Boyer.,History of Geometry, Scripta Mathematica, 1956.Google Scholar
  8. [Br] Browder F.E.,Mathematical Developments Arising from Hilbert Problems, Proc. Symposia in Pure Math. 28, Providence, Am. Math. Soc., 1976.MATHGoogle Scholar
  9. [Co] Coolidge J.L.,A History of Geometrical Methods, Clarendon Press, Oxford, 1940.Google Scholar
  10. [De] Réné Descartes.,La Géométrie (Paris ca. 1657). References are to the translation by David E. Smith and M. L. Latham, published under the title “The Geometry of Réné Descartes, Open Court Chicago, 1925.Google Scholar
  11. [EB]Encyclopaedia Britannica, 1971 edition.Google Scholar
  12. [EMW]Encyclopadie der Mathematische Wissenschaften, vol. III, Part 1 (first half). Teubner, 1907–10.Google Scholar
  13. [En] Enriques F.,Prinzipien der Geometrie, pp. 1–129 of Enz. Math. Wiss. III. AB. (ca. 1907).Google Scholar
  14. [Eu] Sir Thomas Heath.,The Thirteen Books of Euclid's Elements, 3 vols. Second ed., Cambridge Univ. Press, 1921; Dover reprint 1956.Google Scholar
  15. [Fr1] Freudenthal H.,Zur Geschichte der Grundlagen der Geometrie, Niew Arch. voor. Wisk.5 (1957), 105–142.MATHMathSciNetGoogle Scholar
  16. [Fr2] Freudenthal H.,The Main Trends in the Foundations of Geometry in the 19th Century, inProc. International Congress on Logic Methodology and the Philosopy of Science, 1960 (E. Nagel, P. Suppes, A. Tarski, eds.).Google Scholar
  17. [GdG] David Hilbert.,Grundlagen der Geometrie, First ed., Tuebner, 1899.Google Scholar
  18. [H-B] David Hilbert., Bernays P.,Grundlagen der Mathematik, Springer, Berlin 1934, v. 2 1939.Google Scholar
  19. [H1] David Hilbert.,Foundations of Geometry, Springer, Berlin 1934, v. 2 1939.Google Scholar
  20. [H7] David Hilbert.,Grundlagen der Geometrie, 7te Aufl. Teubner, 1930.Google Scholar
  21. [H10] David Hilbert.,Foundations of Geometry, English translation of the 10th German edition (P. Bernays, Ed.). Open Court, 1971.Google Scholar
  22. [HGA] David Hilbert.,Gesammelte Abhandlungen, (3 vols.), Springer 1935.Google Scholar
  23. [He] Hedrick E.R.,The English and French Translation of Hilbert's Grundlangen der Geometrie, Bull. Am. Math. Soc. 9 (1902), 158–65.MathSciNetGoogle Scholar
  24. [JvH] J. van Heijenoort.,From Frege to Gödel, Harvard University Press, 1967.Google Scholar
  25. [K1] Felix Klein.,Famous Problems of Elementary Geometry, Trans. by W.W. Beman and D.E. Smith New York Dover, 1956. Stechert. 1940; Dover, 1956. (German edition published in 1908).Google Scholar
  26. [K2] Felix Klein.,Elementary Mathematics from an Advanced Standpoint, v. 2. Trans. by E.R. Hedrick and C.A. Nobel. Macmillan, 1939. (Original German edition published in 1908).Google Scholar
  27. [Kl] Morris Kline.,Mathematical Thought from Ancient to Modern Times, Oxford Univ. Press. 1972.Google Scholar
  28. [Lo] Gino Loria.,Pour une histoire de la géometrie analytique, Verh. 3rd Int. Math. Kongr., Heidelberg, 1904, 562–74.Google Scholar
  29. [LT2] Garrett Birkhoff.,Lattice Theory, second edition. American Mathematical Society, 1948.Google Scholar
  30. [Mo] E.H. Moore.,On the Projective Axioms of Geometry, Trans. Am. Math. Soc.9 (1903), 402–24.Google Scholar
  31. [Mo2] E.H. Moore.,On the Foundations of Mathematics, Am. Math. Soc.9 (1903), 402–24.Google Scholar
  32. [Mo3] Moore R.L.,Sets of Metrical Hypotheses for Geometry, Trans. TAMS9 (1908) 487–512.CrossRefGoogle Scholar
  33. [Po] Henri Poincaré.,Poincaré's Review of Hilbert's Foundations of Geometry, trans. by E.V. Huntington. Bull. Am. Math. Soc.9 (1903), 1–23.Google Scholar
  34. [Sch] Schmidt A.,Zu Hilberts Grundlagen der Geometrie, in Hilbert, Ges. Werk vol. ii., pp. 400–410.Google Scholar
  35. [To] Torretti R.,Philosophy of Geometry from Riemann to Poincaré, Reidel Boston 1978MATHGoogle Scholar
  36. [V] Vahlen K.Th.,Abstrakte Geometrie, Teuber, 1905.Google Scholar
  37. [Ve] Veblen O.,A System of Axioms for Geometry, Trans. AMS5 (1904), 343–33.CrossRefMathSciNetMATHGoogle Scholar
  38. [VY] Veblen O., Young J.W.,Projective Geometry, 2 vols. Ginn, Boston, 1910, 1918.MATHGoogle Scholar
  39. [We] Herman Weyl.,David Hilbert and His Mathematical Work, Bull. Am. Math. Soc.50 (1944), 612–54.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer 1987

Authors and Affiliations

  • Garrett Birkhoff
    • 1
    • 2
  • Mary Katherine Bennett
    • 1
    • 2
  1. 1.Dept. of MathematicsHarvard Univ.Cambrige
  2. 2.Dept. of MathematicsUniv. of MassachusettsAmherst

Personalised recommendations