Rendiconti del Circolo Matematico di Palermo

, Volume 38, Issue 1, pp 5–12 | Cite as

The catenarian property of power series rings over a globalized pseudo-valuation domain

  • Florida Girolami


LetR be a locally finite dimensional globalized pseudo-valuation domain with Arnold’s SFT-property. It is shown that the power series ringR[[X]] is catenarian. Examples of non catenarianR[[X]] (resp.R[X]) withR[X] (resp.R[[X]]) catenarian are also given.


Prime Ideal Commutative Ring Polynomial Ring Chain Condition Canonical Extension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anderson D.F., Dobbs D.E.,Pairs of rings with the same prime ideals, Can. J. Math.,32 (1980), 362–384.MATHMathSciNetGoogle Scholar
  2. [2]
    Arnold J.T.,Krull dimension in power series rings, Trans. Amer. Math. Soc.,177 (1973), 299–304.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Arnold J.T.,Power series rings over Prüfer domains, Pac. J. Math.,44 (1973), 1–11.MATHGoogle Scholar
  4. [4]
    Arnold J.T.,The catenarian property of power series rings over a Prüfer domain, Proc. Amer. Math. Soc.,94 (1985), 577–580.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Bourbaki N.,Algèbre commutative, Chap. 8–9, Masson, Paris, 1983.MATHGoogle Scholar
  6. [6]
    Bouvier A., Dobbs D.E., Fontana M.,Universally catenarian integral domains, Adv. Math.,72 (1988), 211–238.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Bouvier A., Fontana M.,The catenarian property of the polynomial rings over a Prüfer domain, in Séminaire d’Algèbre Paul Dubreil et Marie-Paule Malliavin, Lecture Notes in Math, n. 1146, Springer, Berlin-New York, 1985.Google Scholar
  8. [8]
    Brewer J.W.,Power series over commutative rings, M. Dekker, New York, 1981.MATHGoogle Scholar
  9. [9]
    Dobbs D.E., Fontana M.,On pseudo-valuation domains and their globalizations, Commutative Algebra, Proc. Trento Conference, Lect. Notes Pure Appl. Math., M. Dekker, 1983.Google Scholar
  10. [10]
    Dobbs D.E., Fontana M.,Locally pseudo-valuation domains, Ann. Mat. Pura Appl.,134 (1983), 147–168.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Dugundji J.,Topology, Allyn and Bacon, Boston, 1969.Google Scholar
  12. [12]
    Fontana M.,Topologically defined classes of commutative rings, Ann. Mat. Pura Appl.,123 (1980), 331–355.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Gilmer R.,Multiplicative Ideal Theory, Dekker, New York, 1972.MATHGoogle Scholar
  14. [14]
    Girolami F.,Power series rings over globalized pseudo-valuation domains, J. Pure Appl. Algebra,50 (1988), 259–269.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Hedstrom J.R., Houston E.G.,Pseudo-valuation domains, Pac. J. math.,75 (1978), 137–147.MATHMathSciNetGoogle Scholar
  16. [16]
    Hedstrom J.R., Houston E.G.,Pseudo-valuation domains, II, Houston J. Math.,4 (1978), 199–207.MATHMathSciNetGoogle Scholar
  17. [17]
    Lequain Y.,Catenarian property in a domain of formal power series, J. Algebra,65 (1980), 110–117.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Malik S., Mott J.L.,Strong S-domains, J. Pure Appl. Algebra,28 (1983), 249–264.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Ratliff L.J., Jr.,On quasi-unmixed local domains, the altitude formula, and the chain condition for prime ideals, (I), Amer. J. Math.,91 (1969), 508–528.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    Ratliff L.J., Jr.,Chain Conjectures in Ring Theory, Lecture Notes in Math. n. 647, Springer, Berlin-New York, 1978.MATHGoogle Scholar

Copyright information

© Springer 1989

Authors and Affiliations

  • Florida Girolami
    • 1
  1. 1.Dipartimento di Matematica Istituto G. CastelnuovoUniversità di Roma “La Sapienza”RomaItalia

Personalised recommendations