Advertisement

Identities of sums of commutative subalgebras

  • Yuri Bahturin
  • Antonio Giambruno
Article

Keywords

Associative Algebra Wreath Product Polynomial Identity Free Algebra Triangular Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abstract

SiaR un'algebra associativa tale cheR=A+B conA, B sottoalgebre commutative. Si dimostra cheR soddisfa l'identitá polinomiale [[x,y],[z,t]]≡0 e che, seV é la varietá determinata da questa identitá,V é la piú piccola varietá contenente tutte le algebre somma di sottoalgebre commutative. Si determina inoltre la struttura delle algebre libere diV.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bahturin Y.,Identical Relations in Lie Algebras, Utrecht: VNU Science Press, 1987.MATHGoogle Scholar
  2. [2]
    Bahturin Y., Kegel O.H.,Universal sums of abelian subalgebras, to be published.Google Scholar
  3. [3]
    Itô N.,Über das Produkt von zwei abelschen Gruppen, Math. Zeitschr.,63 (1955), 401–404.Google Scholar
  4. [4]
    Kegel O.H.,Zur Nilpotenz gewisser assoziativer Ringe, Math. Annalen,149 (1963), 258–260.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Lewin J.,A matrix representation for associative algebras I, II, Trans. Amer. Math. Soc.,188 (1974), 29–308; 309–317.MathSciNetGoogle Scholar
  6. [6]
    Mal'cev Yu.N.,A basis for the identities of the algebra of upper triangular matrices, Algebra i Logika,10 (1971), 393–400 (Russian).MathSciNetGoogle Scholar
  7. [7]
    Procesi C.,Rings with Polynomial Identities, New York: Marcell Dekker, 1973.MATHGoogle Scholar
  8. [8]
    Vovsi S.,Triangular Products of Group Representations and Their Applications, Progress in Math.,17. Boston, Basel, Stuttgart: Birkhäuser, 1981.MATHGoogle Scholar

Copyright information

© Springer 1994

Authors and Affiliations

  • Yuri Bahturin
    • 1
  • Antonio Giambruno
    • 2
  1. 1.Department of MathematicsMoscow UniversityMoscowRussia
  2. 2.Dipartimento di MatematicaUniversitá di PalermoPalermoItalia

Personalised recommendations