# The integration of certain products of the multivariable*H*-function with a general class of polynomials

- 74 Downloads
- 23 Citations

## Abstract

The authors present six general integral formulas (four definite integrals and two contour inegrals) for the*H*-function of several complex variables, which was introduced and studied in a series of earlier papers by H. M. Srivastava and R. Panda (*cf., e.g.*, [25] through [29]; see also [14] through [18], [20], [24], [32], [34], [35], [37], and [38]). Each of these integral formulas involves a product of the multivariable*H*-function and a general class of polynomials with essentially arbitrary coefficients which were considered elsewhere by H. M. Srivastava [21]. By assigning suiatble special values to these coefficients, the main results (contained in Theorems 1, 2 and 3 below) can be reduced to integrals involving the classical orthogonal polynomials including, for example, Hermite, Jacobi [and, of course, Gegenbauer (or ultraspherical), Legendre, and Tchebycheff], and Laguerre polynomials, the Bessel polynomials considered by H. L. Krall and O. Frink [9], and such other classes of generalized hypergeometric polynomials as those studied earlier by F. Brafman [3] and by H. W. Gould and A. T. Hopper [8]. On the other hand, the multivariable*H*-functions occurring in each of our main results can be reduced, under various special cases, to such simpler functions as the generalized Lauricella hypergeometric functions of several complex variables [due to H. M. Srivastava and M. C. Daoust (*cf.* [22] and [23])] which indeed include a great many of the useful functions (or the products of several such functions) of hypergeometric type (in one and more variables) as their particular cases (see,*e. g.*, [1], [10] and [39]).

Many of the aforementioned applications of our integral formulas (contained in Theorems 1, 2 and 3 below) are considered briefly. Further usefulness of some of these consequences of Theorems 1 and 2 in terms of the classical orthogonal polynomials is illustrated by considering a simple problem involving the orthogonal expansion of the multivariable*H*-function in series of Jacobi polynomials. It is also shown how these general integrals are related to a number of results scattered in the literature. 0261 0262 V

## Keywords

Complex Variable Integral Formula Contour Integral Hermite Polynomial Jacobi Polynomial## Preview

Unable to display preview. Download preview PDF.

## References

- [1]Appell P.
*et*Kampé de Fériet J.,*Fonctions Hypergéométriques et Hypersphériques; Polynômes d'Hermite*, Gauthier-Villars, Paris, 1926.MATHGoogle Scholar - [2]Banerji P. K. and Saxena R. K.,
*Contour integral involving Legendre polynomial and Fox’s H-function*, Univ. Nac. Tucumán Rev. Ser. A**23**(1973), 193–198. {See also Math. Reviews**51**(1976), p. 1873 #13313 (by H. M. Srivastava).}MathSciNetGoogle Scholar - [3]Brafman F.,
*Some generating functions for Laguerre and Hermite polynomials*, Canad. J. Math.**9**(1957), 180–187.MATHMathSciNetGoogle Scholar - [4]Chobisa M. P.,
*Expanson formulae for generalised H-function of two variables involving Jacobi polynomials*, Bull. Math. Soc. Sci. Math. R. S. Roumanie**21**(**69**) (1977), 263–269.MathSciNetGoogle Scholar - [5]Erdélyi A., Magnus W., Oberhettinger F. and Tricomi F. G.,
*Higher Transcendental Functions*, Vols. I and II, McGraw-Hill, New York, Toronto and London, 1953.Google Scholar - [6]Erdélyi A., Magnus W., Oberhettinger F., and Tricomi F. G.,
*Tables of Integral Transforms*, Vol., I and II, McGraw-Hill, New York, Toronto and London, 1954.Google Scholar - [7]Fox C.,
*The G and H functions as symmetrical Fourier kernels*, Trans. Amer. Math. Soc.**98**(1961), 395–429.MATHCrossRefMathSciNetGoogle Scholar - [8]Gould H. W. and Hopper A. T.,
*Operational formulas connected with two generalizations of Hermite polynomials*, Duke Math. J.**29**(1962), 51–63MATHCrossRefMathSciNetGoogle Scholar - [9]Krall H. L. and Frink O.,
*A new class of orthogonal polynomials: the Bessel polynomials*, Trans. Amer. Math. Soc.**65**(1949), 100–115.CrossRefMathSciNetGoogle Scholar - [10]Lauricella G.,
*Sulle funzioni ipergeometriche a più variabili*, Rend. Circ. Mat. Palermo**7**(1893), 111–158.CrossRefGoogle Scholar - [11]Luke Y. L.,
*Mathematical Functions and Their Approximations*, Academic Press, New York, San Francisco and London, 1975.MATHGoogle Scholar - [12]Modi G. C.,
*Contour integrals involving generalized H-functions*, Bull. Math. Soc. Sci. Math. R. S. Roumanie**23**(**71**) (1979), 65–70.MathSciNetGoogle Scholar - [13]Munot P. C. and Kalla S. L.,
*On an extension of generalised function of two variables*, Univ. Nac. Tucumán Rev. Ser. A**21**(1971), 67–84.MathSciNetMATHGoogle Scholar - [14]Panda R.,
*Integration of certain products associated with the H-function of several variables*, Comment. Math. Univ. St. Paul.**26**(1977), fasc. 2, 115–123.MathSciNetGoogle Scholar - [15]Panda R.,
*Certain integrals involving the H-function of several variables*, Publ. Inst. Math. (Beograd) (N. S.)**22**(**36**) (1977) 207–210.MathSciNetGoogle Scholar - [16]Panda R.,
*On a multiple integral involving the H-function of several variables*, Indian J. Math.**19**(1977), 157–162.MATHMathSciNetGoogle Scholar - [17]Prasad Y. N. and Maurya R. P.,
*Some theorems on a multidimensional integral transformation*, Pure Appl. Math. Sci.**11**(1980), 55–60.MATHMathSciNetGoogle Scholar - [18]Prasad Y. N. and Singh S. N.,
*An application of the H-function of several variables in the production of heat in a cylinder*, Pure Appl. Math. Sci.**6**(1977), 57–64.MATHMathSciNetGoogle Scholar - [19]Singh N. P.,
*A study of H-Function and Its Generalizations*, Ph. D. thesis, Bhopal Univ., India, 1980.Google Scholar - [20]Siddiqui A.,
*Integral involving the H-function of several variables and an integral function of two complex variables*, Bull. Inst. Math. Acad. Sinica**7**(1979), 329–332.MATHMathSciNetGoogle Scholar - [21]Srivastava H. M.,
*A contour integral involving Fox’s H-function*, Indian J. Math.**14**(1972), 1–6.MATHMathSciNetGoogle Scholar - [22]Srivastava H. M. and Daoust M. C.,
*Certain generalized Neumann expansions associated with the Kampé de Fériet function*, Nederl. Akad. Wetensch. Proc. Ser. A**72**=Indag. Math.**31**(1969), 449–457.MathSciNetGoogle Scholar - [23]Srivastava H. M. and Daoust M. C.,
*A not on the convergence of Kampé de Fériet's double hypergeometric series*, Math. Nachr.**53**(1972), 151–159.MATHCrossRefMathSciNetGoogle Scholar - [24]Srivastava H. M., Goyal S. P. and Agrawal R. K.,
*Some multiple integral relations for the H-function of several variables*, Bull. Inst. Math. Acad. Sinica**9**(1981), 261–277.MATHMathSciNetGoogle Scholar - [25]Srivastava H. M. and Panda R.,
*Some bilateral generating functions for a class of generalized hypergeometric polynomials*, J. Reine Angew. Math.**283/284**(1976), 265–274.MathSciNetGoogle Scholar - [26]Srivastava H. M. and Panda R.,
*Expansion theorems for the H function of several complex variables*, J. Reine Angew. Math.**288**(1976), 129–145.MathSciNetGoogle Scholar - [27]Srivastava H. M. and Panda R.,
*Some expansion theorems and generating relations for the H function of several complex variables*. I and II, Comment. Math. Univ. St. Paul.**24**(1975), fasc. 2, 119–137;*ibid*. Srivastava H. M. and Panda R.,*Some expansion theorems and generating relations for the H function of several complex variables*. I and II, Comment. Math. Univ. St. Paul.**25**(1976), fasc. 2, 167–197.MathSciNetGoogle Scholar - [28]Srivastava H. M. and Panda R.,
*Certain multidimensional integral transformations*, I and II, Nederl. Akad. Wetensch. Proc. Ser. A**81**=Indag. Math.**40**(1978), 118–131 and 132–144.MathSciNetGoogle Scholar - [29]Srivastava H. M. and Panda R.,
*Some multiple integral transformations involving the H-function of several variables*, Nederl. Akad. Wetensch. Proc. Ser. A**82**=Indag. Math.**41**(1979), 353–362.MathSciNetMATHGoogle Scholar - [30]Srivastava H. M. and Panda R.,
*A note on certain results involving a general class of polynomials*, Boll. Un. Mat. Ital. (5)**16A**(1979), 467–474.MathSciNetGoogle Scholar - [31]Srivastava H. M. and Pathan M. A.,
*Some bilateral generating functions for the extended Jacobi polynomials*. I and II, Comment. Math. Univ. St. Paul.**28**(1979), fasc. 1, 23–30;*ibid.*Srivastava H. M. and Pathan M. A.,*Some bilateral generating functions for the extended Jacobi polynomials*. I and II, Comment. Math. Univ. St. Paul.**29**(1980), fasc. 2, 105–114.MATHMathSciNetGoogle Scholar - [32]Srivastava H. M. and Raina R. K.,
*New generating functions for certain polynomial systems associated with the H-functions*, Hokkaido Math. J.**10**(1981), 34–45.MATHMathSciNetGoogle Scholar - [33]Srivastava H. M. and Singhal J. P.,
*A unified presentation of certain classical polynomials*, Math. Comput.**26**(1972), 969–975.MATHCrossRefMathSciNetGoogle Scholar - [34]Srivastava H. M. and Srivastava A.,
*A new class of orthogonal expansions for the H-function of several complex variables*, Comment. Math. Univ. St. Paul.**27**(1978), fasc. 1, 59–69.MATHMathSciNetGoogle Scholar - [35]Srivastava R.,
*Definite integrals associated with the H-function of several variables*, Comment. Math. Univ. St. Paul.**30**(1981), fasc. 1, 1–5.MathSciNetGoogle Scholar - [36]Szegö G.,
*Orthogonal Polynomials*, Amer. Math. Soc. Colloq. Publ., Vol. XXIII, Fourth edition, Amer. Math. Soc., Providence, Rhode Island, 1975.MATHGoogle Scholar - [37]Tandon O. P.,
*Finite summation formulas for the H-function of n variables*, Pure Appl. Math. Sci.**11**(1980), 23–30.MATHMathSciNetGoogle Scholar - [38]Tandon O. P.,
*Contiguous relations for the H-function of n variables*, Indian J. Pure Appl. Math.**11**(1980), 321–325.MATHMathSciNetGoogle Scholar - [39]Wright E. M.,
*The asymptotic expansion of the generalized hypergeometric function*. I and II, J. London Math. Soc.**10**(1935), 286–293; Proc. London Math. Soc. (2)**46**(1940), 389–408.MATHCrossRefGoogle Scholar