Advertisement

Una generalizzazione del birapporto sopra un anello

  • Leonardo Cirlincione
  • Maria Rosaria Enea
Article

Abstract

We generalize to the case of the projective line over a (not necessarily commutative) ring the well-know theorem on the bijective maps preserving a given cross-ratio.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. [1]
    Baer R.,Linear algebra and projective geometry, Academic Press 1952 New York.MATHGoogle Scholar
  2. [2]
    Bartolone C.G.,Jordan Homomorphisms, Chain Geometries and the Fundamental Theorem, Abh. Math. Sem. Univ. Hamburg59, (in corso di stampa) (1989).Google Scholar
  3. [3]
    Bartolone C., Bartolozzi F.,Topics in geometric algebra over rings inRings and Geometry, R. Kaya et al. (eds.), 353–389, Reidel Pub. Co. 1985.Google Scholar
  4. [4]
    Bartolone C., Di Franco F.,A remark on the projectivities of the projective line over a commutative ring, Math. Z.169 (1979), 23–29.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Hua L.K.,On the automorphisms of a s-field, Proc. Nat. Acad. Sci. USA35 (1949), 386–389.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Limaye N.B.,Projectivities over local ring, Math. Z.121, (1971), 175–180.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Limaye N.B., Limaye B.V.,Fundamental theorem for the projective line over non-commutative local rings, Arch. Math.28 (1977), 102–109.CrossRefMathSciNetGoogle Scholar
  8. [8]
    Veldkamp F.D.,Projective ring planes and their homomorphisms inRings and Geometry, R. Kaya et al. (eds.), 289–350 Reidel Pub. Co. 1985.Google Scholar

Copyright information

© Springer 1990

Authors and Affiliations

  • Leonardo Cirlincione
    • 1
  • Maria Rosaria Enea
    • 1
  1. 1.Dipartimento di Matematica ed Applicazioni dell’ Università di PalermoPalermo(Italy)

Personalised recommendations