Advertisement

Rendiconti del Circolo Matematico di Palermo

, Volume 36, Issue 1, pp 122–138 | Cite as

Sui principi variazionali nella meccanica dei continui classici

  • Giovanni Carini
Article

Abstract

In this paper, along with the well established lines of the analytical mechanics, we aim to show an autonomous formulation of the fundamental principle of Lagrange-d'Alembert and of the subsequent Hamilton principle in classical mechanics of deformable continua in the sense that the afore—mentioned principles do not turn out to be a reformulation of the well known undefined equations of motion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. [1]
    Serrin J.,Mathematical principles of classical fluid mechanics, Handbuch der Physik, Ed. S. Flügge, Band VIII/1 (1959).Google Scholar
  2. [2]
    Levi-Civita T., Amaldi U.,Lezioni di Meccanica Razionale, Vol. II, parte I, Cap. V, n. 20, N. Zanichelli, Bologna (1974).Google Scholar
  3. [3]
    Levi-Civita T., Amaldi, U.,Compendio di Meccanica Razionale, parte II, Cap. X, §1 e 2, N. Zanichelli, Bologna (1938).Google Scholar
  4. [4]
    Levi-Civita T., Amaldi U.,Lezioni di Meccanica Razionale, Vol. II, parte II, Cap. XI, §3, N. Zanichelli, Bologna (1974).Google Scholar

Copyright information

© Springer 1987

Authors and Affiliations

  • Giovanni Carini
    • 1
  1. 1.Dipartimento di MatematicaContrada PapardoSant' Agata-Messina

Personalised recommendations