Rendiconti del Circolo Matematico di Palermo

, Volume 36, Issue 1, pp 90–94 | Cite as

Conical Embeddings of Steiner systems

  • Dieter Jungnickel
  • Scott A. Vanstone


Any classicalS(3,2 a +1;2 ab +1) is embedded intoPG(2,2 ab ) as point set one may use any conic, the blocks being determined by subplanes of order 2 a . Consequently, every classicalS(3,2 a +1;2 ab +1) is naturally embedded intoPG(2,K) whereK is the algebraic closure ofGF(2).


Algebraic Closure Natural Embedding Steiner System NSERC Grant Singer Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Beth Th., Jungnickel D., Lenz H.,Design Theory, Bibliographisches Institut, Mannheim-Wien-Zürich (1985) and Cambridge University Press, Cambridge (1986).MATHGoogle Scholar
  2. [2]
    Hirschfeld J.W.P.,Projective geometries over finite fields, Oxford Univ. Press (1979).Google Scholar
  3. [3]
    Jungnickel D., Vedder K.,On the geometry of planar difference sets, Europ. J. Comb5 (1984), 143–148.MATHMathSciNetGoogle Scholar
  4. [4]
    Plücker J.,System der analytischen Geometrie, auf neue Betrachtungsweisen gegründet, und insbesondere eine ausführliche Theorie der Curven dritter Ordnung enthaltend, Dunker und Humblot, Berlin (1835).Google Scholar
  5. [5]
    Plücker J.,Theorie der algebraischen Curven, gegründet auf eine neue Betrachtungsweise der analytischen Geometrie, Marcus, Bonn (1839).Google Scholar
  6. [6]
    De Vries H.L.,Historical notes on Steiner systems, Discr. Math.52 (1984), 293–297.MATHCrossRefGoogle Scholar
  7. [7]
    Witt E.,Uber Steinersche Systeme, Abh. Math. Sem. Univ. Hamburg12 (1938), 265–275.CrossRefGoogle Scholar

Copyright information

© Springer 1987

Authors and Affiliations

  • Dieter Jungnickel
    • 1
  • Scott A. Vanstone
    • 2
  1. 1.Mathematisches InstitutJustus-Liebig-Universität GiessenGiessenF.R. Germany
  2. 2.Department of Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada

Personalised recommendations