Strictly localizable measures

  • Baltasar Rodriguez-Salinas


It is proved that, under the Continuum Hypotesis (CH), every complete, locally determined, Radon measures of type (H), on a topological space with countable basis, is strictly localizable. This result is useful in the theory of invariant measures on a topological group and, in particular, in the theory of Hausdorff measures.


Topological Space Invariant Measure Topological Group Borel Measure Radon Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Dinculeanu H.,Vector Measures. Pergamon Press, 1967.Google Scholar
  2. [2]
    Fremlin D.H.,Topological Riesz Spaces and Measures Theory. Cambridge Univ. Press, London, 1974.Google Scholar
  3. [3]
    Ionescu Tulcea A., Ionescu Tulcea C.,Topics in the Theory of Lifting. Springer, Berlin Heidelberg, New York, 1969.MATHGoogle Scholar
  4. [4]
    Jimenez Guerra P., Rodriguez-Salinas B.,Espacios de Radon de tipo (H). Rev. R. Acad. Cienc. Exac. Fis. Natur. Madrid,69, (1975) 761–774.Google Scholar
  5. [5]
    Jimenez Guerra P., Rodriguez-Salinas B.,Medidas de Radon de tipo (H)en espacios topológicos arbitrarios. Mem. R. Acad. Cienc. Exac. Fis. Natur. Madrid, 1979.Google Scholar
  6. [6]
    Jimenez Guerra P., Rodriguez-Salinas B.,Strictly localizable measures. Nagoya Math. J.,35, (1982) 503–517.Google Scholar
  7. [7]
    Maharam D.,On a theorem of von Neumann. Proc. Amer. Math. Soc.9 (1958) 987–994.CrossRefMathSciNetGoogle Scholar
  8. [8]
    Montgomery D.,Non-separable metric spaces. Fund. Math.,25 (1935) 527–533.MATHGoogle Scholar
  9. [9]
    Neumann Von J.,Algebrische Representaten der Funktionen bis auf eine Menge von Masse Null. J. Crelle,165 (1931) 109–115.MATHGoogle Scholar
  10. [10]
    Rodriguez-Salinas, B.,Teoría de la medida sobre los espacios topológicos no localmente compactos. Rev. Mat. Hispano-Amer.,33 (1973) 178–192 and 257–274.MATHMathSciNetGoogle Scholar
  11. [11]
    Rodriguez-Salinas, B.,Quasi Radon measures and Radon measures of type (H). Rend. Circ. Mat. di Palermo40 (1991), 142–152.MATHMathSciNetGoogle Scholar
  12. [12]
    Rodriguez-Salinas, B.,On the uniqueness of non locally finite invariant measures on a topological group. (To appear).Google Scholar
  13. [13]
    Ryan R.,Representative sets and direct sums. Proc. Amer. Math.15 (1964) 387–390.MATHCrossRefGoogle Scholar
  14. [14]
    Schwatz L.,Radon Measures on Arbitrary topological Spaces and Cylindrical Measures. Oxford Univ. Press, 1973.Google Scholar

Copyright information

© Springer 1992

Authors and Affiliations

  • Baltasar Rodriguez-Salinas
    • 1
  1. 1.Facultad de ciencias matematicas Departamento de Análisis MatemáticoUniversidad ComplutenseMadrid

Personalised recommendations