Classi di isomorfismo delle cubiche diFq

  • Edmondo Bedocchi


LetFq (q=pr) be a field of characteristicp>3 andA the set of all elliptic cubic curves overFq having a given absolute invariantj. Furthermore let ≈be the following equivalence relation: «
if and only if
and Fq are isomorphic overFq as abelian varieties».

The aim of this paper is to study the equivalence classes inA, induced by ≈, and the Frobenius' traces of the cubic curves belonging to different subclasses ofA.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Adams, W. W., Goldstein L. J.,Introduction to number theory, Prentice-Hall Inc. Englewood Cliffs New Jersey, 1976.MATHGoogle Scholar
  2. [2]
    Bruck R. H.,Computational aspects of certain combinatorial problems, Proc. Symposia in Appl. Math., A.M.S.6 (1956), 31–43.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Cassels J. W. S.,Diophantine equations with special reference to elliptic curves, J. London Math. Soc.,41 (1966), 193–291.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Cicchese M.,Sulle cubiche di un piano di Galois, Rend. Mat. Univ. Roma, (5)24 (1965), 291–330.MathSciNetMATHGoogle Scholar
  5. [5]
    Cicchese M.,Sulle cubiche di un piano lineare S 2,q con q≡1 (mod 3) Rend. Mat. Univ. Roma, (6)4 (1971), 349–383.MathSciNetMATHGoogle Scholar
  6. [6]
    Davenport H., Hasse H.,Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. reine angew. Math.,172 (1935), 151–182.MathSciNetMATHGoogle Scholar
  7. [7]
    Deuring M.,Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Univ. Hamburg,14 (1941), 197–272.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Gauss C. F.,Theoria residuorum biquadraticorum commentatio prima et secunda, Werke vol. II 1863, 65–148.Google Scholar
  9. [9]
    Gauss C. F.,Recherches arithmétiques, Hermann & Fils Paris 1910, 443–449.Google Scholar
  10. [10]
    Hasse H.,Zur Theorie der abstrakten elliptischen Funktionenkörper I, II, III, J. reine angew. Math.,175 (1936), 55–62, 69–88, 193–208.MathSciNetMATHGoogle Scholar
  11. [11]
    Joly J. R.,Équations et variétés algébriques sur un corps fini, Enseignement Math.,19 (1973), 1–117.MathSciNetMATHGoogle Scholar
  12. [12]
    Latimer C. G.,On the fundamental number of a rational generalized quaternion algebra, Duke Math. J.,1 (1935), 433–435.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    Latimer C. G.,The quadratic subfields of a generalized quaternion algebra, Duke Math. J.,2 (1936), 681–684.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    Matthews C. R.,Gauss sums and elliptic functions, Invent. Math.,52 (1979), 163–185.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    Schmidt W. M.,Equations over finite fields, Lecture Notes in Mathematics 536, Springer-Verlag 1976.Google Scholar
  16. [16]
    Stieltjes T. J.,Contribution à la, théorie des residus cubiques et biquadratiques, Œuvres complètes Tomo I, Noordhoff Groningen 1914, 210–275.Google Scholar
  17. [17]
    Waterhouse W. C.,Abelian varieties over finite fields, Ann. Sci. École Norm. Sup.,2 (1969) 521–560.MathSciNetMATHGoogle Scholar
  18. [18]
    Weil A.,Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc.,55 (1949), 497–508.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    Whiteman A. L.,The cyclotomic numbers, of order twelve, Acta Arith.,6 (1960), 53–76.MathSciNetMATHGoogle Scholar

Copyright information

© Springer 1981

Authors and Affiliations

  • Edmondo Bedocchi
    • 1
  1. 1.Istituto di Geometria-UniversitàBologna

Personalised recommendations