Rendiconti del Circolo Matematico di Palermo

, Volume 33, Issue 3, pp 340–350 | Cite as

On dense univalued representations of multivalued maps

  • Zvi Artstein


Representations of multivalued maps as pointwise closure of a sequence of point-valued functions are derived from functional analytic considerations. Characterizations of convergence in the space of multifunctions, and of the ensemble of selections are implied.


Probability Space Weak Convergence Dense Sequence Dense Representation Abstract Consideration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Artstein Z.Weak convergence of set-valued functions and control, Siam J. Control,13 (1975), 865–878.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Artstein, Z.,Distributions of random sets and random selections, Israel J. Math.,46 (1983), 313–324.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Billingsley, P.,Convergence of Probability Measures, Wiley, New York, 1968.MATHGoogle Scholar
  4. [4]
    Bourass A., Truffert A.,Ensembles fermes decomposables dans les espaces integraux de type Orliez, Seminaire d'Analyse Convexe, Montpeillier 1982, no.15.Google Scholar
  5. [5]
    Castaing C., Valadier M.,Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics580, Springer Verlag, Berlin, 1977.MATHGoogle Scholar
  6. [6]
    Halmos P. R.,Measure Theory, Van Nostrand, New York, 1950.MATHGoogle Scholar
  7. [7]
    Hart S., Kohlberg E.,Equally distributed correspondences, J. Math. Econ.,1 (1974), 167–174.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Hiai F., Umegaki, H.,Integrals, conditional expectation and martingales of multivalued functions, J. Multivariate Anal.,7 (1977), 149–182.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Hildenbrand W.,Core and Equilibria of a Large Economy, Princeton University Press, Princeton, 1974.MATHGoogle Scholar
  10. [10]
    Lu'u D. Q.,A representation theorem for almost surely convergent sequences of multifunctions, Acta Math. Vietnamica,5 (1981), 141–143.Google Scholar
  11. [11]
    Rockafellar R. T.,Integral funtcionals, normal integrands and measurable selections. Nonlinear Operators and Calculus of Variations, Lecture Notes in Mathematics 543, Springer Verlag, Berlin, 1976, 157–207.Google Scholar
  12. [12]
    Salinetti G., Wets R. J.-B.,On the convergence of closed-valued measurable multifunctions, Tran. Amer. Math. Soc.,266 (1981), 275–289.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Salinetti, G., Wets R. J.-B.,On the convergence in distribution of measurable multifunctions, normal integrands, stochastic processes and stochastic infima. Preprint, IIASA, Laxenburg, Austria, 1982.Google Scholar
  14. [14]
    Valadier M.,Multi-applications measurables a valeurs convexes compactes, J. Math. Pures et Appl.,50 (1971), 265–297.MATHMathSciNetGoogle Scholar

Copyright information

© Springer 1984

Authors and Affiliations

  • Zvi Artstein
    • 1
  1. 1.Department of Theoretical MathematicalThe Weizmann Inst. of ScienceRehovotIsrael

Personalised recommendations