Rendiconti del Circolo Matematico di Palermo

, Volume 41, Issue 1, pp 151–164 | Cite as

Sulle relazioni di ricorrenza a tre termini per polinomi ortonormali sul cerchio unitario

  • C. Belingeri
  • P. E. Ricci


In this paper the pro m of the existence of a three term recurrence relation formula for orthonormal polynomials on the unit circle is studied.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Chihara T.S.,Introduction to orthogonal polynomials, Math. and its Appl. Ser. —Gordon and Breach, New York, 1978.MATHGoogle Scholar
  2. [2]
    Delsarte P., Genin Y.,On the role of orthogonal polynomials on the unit circle in digital signal processing applications, in “Orthogonal Polynomials: Theory and Practice”—P. Nevai Editor, Kluwer Acad. Pub., Dordrecht-Boston-London, 1990.Google Scholar
  3. [3]
    Geronimus Ya L.,Polynomials orthogonal on a circle and their applications, Trans. Amer. Math. Soc.104 (1954).Google Scholar
  4. [4]
    Geronimus Ya L.,Orthogonal Polynomials, Consultants Bureau, New York, 1961.MATHGoogle Scholar
  5. [5]
    Jones W.B., Njastad O., Thron W.J.,Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle, Bull. London Math. Soc.21 (1989).Google Scholar
  6. [6]
    Ricci P.E.,Symmetric orthonormal systems on the unit circle, (in corso di stampa).Google Scholar
  7. [7]
    Szegö G.,Orthogonal polynomials, Amer. Math. Soc. Coll. Pubbl. Vol. XXIII —Providence, R.I., 1939.Google Scholar
  8. [8]
    Szegö G.,Beitrage zur Theorie der Toeplitzschen Formen. II Mathem. Zeit., Vol.9 (1921), 167–190.CrossRefGoogle Scholar
  9. [9]
    Szegö G.,Ein Beitrag zur Theorie der Thetafunktionen. Sitz. Preuss. Akad. Wiss., phys.-math. Kl. (1926), 242–252.Google Scholar

Copyright information

© Springer 1992

Authors and Affiliations

  • C. Belingeri
    • 1
  • P. E. Ricci
    • 1
  1. 1.Dipartimento di Metodi e ModelliMatematici per le Scienze ApplicateRoma

Personalised recommendations