Rendiconti del Circolo Matematico di Palermo

, Volume 50, Issue 3, pp 547–568 | Cite as

Contractive Korovkin subsets in weighted spaces of continuous functions

  • F. Altomare
  • S. Diomede


We characterize those particular subsets of weighted spaces of continuous functions defined on locally compact Hausdorff spaces having the property that any net of positive linear contractions strongly converges to the identity operator provided it converges pointwise on them. Some variants and applications are indicated as well.


Compact Subset Banach Lattice Radon Measure Weighted Space Compact Hausdorff Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Altomare F., Campiti M.,Korovkin-type Approximation theory and its Applications, de Gruyter Studies in Mathematics,17, Walter de Gruyter and Co. Berlin New York, 1994.MATHGoogle Scholar
  2. [2]
    Bauer H., Donner K.,Korovkin approximation in C 0 (X), Math. Ann.,236 (1978), 225–237.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Choquet G.,Lectures on Analysis, Vol. I, W. A. Benjamin Inc. New York-Amsterdam, 1969.Google Scholar
  4. [4]
    Flösser H. O.,Sequences of Positive Contractions on AM-Spaces, J. Approx. Theory,31 (1981), 118–137.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Goullet de Rugy A.,Espaces de fonctions ponderables, Israel J. Math.,12 (1972), 147–160.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Prolla J. B.,Approximation of vector valued functions, Math. Studies,25, North Holland, 1977.Google Scholar
  7. [7]
    Roth W.,A Korovkin type theorem for weighted spaces of continuous functions, Bull. Austral. Math. Soc.,55 (1997), 239–248.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer 2001

Authors and Affiliations

  • F. Altomare
    • 1
  • S. Diomede
    • 2
  1. 1.Dipartimento Interuniversitario di MatematicaUniversità degli studi di BariBari(Italy)
  2. 2.Dipartimento di Scienze Economiche Facoltà di EconomiaUniversità degli studi di BariBari(Italy)

Personalised recommendations