Rendiconti del Circolo Matematico di Palermo

, Volume 33, Issue 1, pp 5–33 | Cite as

Some multilinear generating functions

  • H. M. Srivastava


The multiple hypergeometric generating function (1.3) below, due to H. M. Srivastava and J. P. Singhal [Acad. Roy. Belg. Bull. Cl. Sci. (5)58 (1972), 1238–1247], applies readily to deduce multilinear generating functions for thespecial Jacobi polynomialsP n (α-n,β) (x), P n (α,β-n) (x) orP n (α-n,β-n) (x), the Laguerre polynomialsL n (α) (x), thebiorthogonal polynomialsZ n α (x; k) of J.D.E. Konhauser [Pacific J. Math. 21 (1967), 303–314], and so on, and indeed also for any suitable products of these polynomials. The present paper is motivated by the need for a multiple hypergeometric generating function, analogous to (1.3), which could apply to yield multilinear generating functions for theunrestricted Jacobi polynomialsP n (α,β) (x). Several interesting generalizations of the multiple hypergeometric generating function (1.3), and of its analogue (5.6) thus obtained, are given; many of these generalizations are shown to apply also to derive multilinear generating functions for the classical Hermite polynomialsH n(x) and for their various known generalizations considered, among others, by F. Brafman [Canad. J. Math. 9 (1957), 180–187] and by H. W. Gould and A. T. Hopper [Duke Math. J. 29 (1962), 51–63].

The multilinear generating functions (1.19), (1.22), (1.23), (1.25), (1.30), (3.3), (4.1), (4.2), (4.8), (5.5), (5.6), (6.3), (6.4) and (6.6) below are believed to be new.

(AMS) 1980 Mathematics Subject Classification

Primary 33A65 33A30 Secondary 42C15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Brafman F.,Some generating functions for Laguerre and Hermite polynomials, Canad. J. Math.,9 (1957), 180–187.MATHMathSciNetGoogle Scholar
  2. [2]
    Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G.,Tables of Integral Transforms, Vol. II, McGraw-Hill, New York, London and Toronto, 1954.Google Scholar
  3. [3]
    Gould H. W., Hopper A. T.,Operational formulas connected with two generalizations of Hermite polynomials, Duke Math. J.,29 (1962), 51–63.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Konhauser J. D. E.,Biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math.,21 (1967), 303–314.MATHMathSciNetGoogle Scholar
  5. [5]
    Lauricella G.,Sulle funzioni ipergeometriche a più variabili, Rend. Circ. Mat. Palermo,7 (1893), 111–158.CrossRefGoogle Scholar
  6. [6]
    Madhekar H. C., Thakare N. K.,Multilinear generating functions for Jacobi polynomials and for their two-variable generalizations, Indian J. Pure Appl. Math.,13 (1982), 711–716.MATHMathSciNetGoogle Scholar
  7. [7]
    Patil K. R., Thakare N. K.,Multilinear generating function for the Konhauser biorthogonal polynomial sets, SIAM J. Math. Anal.,9 (1978), 921–923.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Rainville E. D.,Special Functions, Macmillan, New York, 1960; Reprinted by Chelsea, Bronx, New York, 1971.MATHGoogle Scholar
  9. [9]
    Srivastava H. M.,Certain results involving generalized hypergeometric functions, SIAM J. Math. Anal.,1 (1970), 75–81.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Srivastava H. M.,Certain double integrals involving hypergeometric functions, Jñānābha Sect. A,1 (1971), 1–10.MATHGoogle Scholar
  11. [11]
    Srivastava H. M., Daoust M. C.,Certain generalized Neumann expansions associated with the Kampé de Fériet function, Nederl. Akad. Wetensch. Proc. Ser. A,72=Indag. Math.,31 (1969), 449–457.MathSciNetGoogle Scholar
  12. [12]
    Srivastava H. M., Panda R.,Some analytic or asymptotic confluent expansions for functions of several variables, Math. Comput.,29 (1975), 1115–1128.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Srivastava H. M., Singhal J. P.,Some formulas involving the products of several Jacobi or Laguerre polynomials, Acad. Roy. Belg. Bull. Cl. Sci., (5),58 (1972), 1238–1247.MathSciNetGoogle Scholar
  14. [14]
    Szegö G.,Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., Vol. XXIII, Fourth edition, Amer. Math. Soc., Providence, Rhode Island, 1975.MATHGoogle Scholar
  15. [15]
    Thakare N. K.,Note on «Some formulas involving the products of several Jacobi or Laguerre polynomials», Indian J. Pure Appl. Math.,11 (1980), 1158–1161.MATHMathSciNetGoogle Scholar

Copyright information

© Springer 1984

Authors and Affiliations

  • H. M. Srivastava
    • 1
  1. 1.Department of MathematicsUniversity of VictoriaVictoriaCanda

Personalised recommendations