Rendiconti del Circolo Matematico di Palermo

, Volume 37, Issue 1, pp 150–160 | Cite as

Hyperplane mean values of solutions of parabolic equations

  • N. A. Watson


We study the behaviour of certain hyperplane mean values of solutions of parabolic equations on an infinite strip, and use our results to prove a representation theorem for solutions which satisfy a one-sidedL p constraint.


Parabolic Equation London Math Representation Theorem Parabolic System Linear Parabolic Equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aronson D.G.,Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci.,22 (1968), 607–694.MATHMathSciNetGoogle Scholar
  2. [2]
    Chabrowski J.,Representation theorems and Fatou theorems for parabolic systems in the sense of Petrovskiî, Colloq. Math.31 (1974), 301–315.MATHMathSciNetGoogle Scholar
  3. [3]
    Chabrowski J., Watson N.A.,Properties of solutions of weakly-coupled parabolic systems, J. London Math. Soc. (2),23, (1981), 475–495.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Il'in A.M., Kalashnikov A.S., Oleinik O.A.,Linear equations of the second order of parabolic type, Uspekhi Mat. Nauk,17 No. 3 (1962), 3–147; Russian Math. Surveys,17 No. 3 (1962) 1–143.Google Scholar
  5. [5]
    Johnson R.,Representation theorems and Fatou theorems for second-order linear parabolic partial differential equations, Proc. London Math. Soc. (3),23 (1971), 325–347. Corrigendum, ibid.,25 (1972), 192.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Watson N.A.,Classes of subtemperatures on infinite strips, Proc. London Math. Soc. (3)27 (1973), 723–746.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Watson N.A.,Uniqueness and representation theorems for parabolic equations, J. London Math. Soc. (2),8 (1974), 311–321.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Watson N.A.,Solutions of parabolic equations with initial values locally in L p, J. Math. Anal. Appl.,89 (1982) 86–94.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 1988

Authors and Affiliations

  • N. A. Watson
    • 1
  1. 1.Department of MathematicsUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations