Advertisement

Rendiconti del Circolo Matematico di Palermo

, Volume 37, Issue 1, pp 150–160 | Cite as

Hyperplane mean values of solutions of parabolic equations

  • N. A. Watson
Article
  • 17 Downloads

Abstract

We study the behaviour of certain hyperplane mean values of solutions of parabolic equations on an infinite strip, and use our results to prove a representation theorem for solutions which satisfy a one-sidedL p constraint.

Keywords

Parabolic Equation London Math Representation Theorem Parabolic System Linear Parabolic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aronson D.G.,Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci.,22 (1968), 607–694.MATHMathSciNetGoogle Scholar
  2. [2]
    Chabrowski J.,Representation theorems and Fatou theorems for parabolic systems in the sense of Petrovskiî, Colloq. Math.31 (1974), 301–315.MATHMathSciNetGoogle Scholar
  3. [3]
    Chabrowski J., Watson N.A.,Properties of solutions of weakly-coupled parabolic systems, J. London Math. Soc. (2),23, (1981), 475–495.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Il'in A.M., Kalashnikov A.S., Oleinik O.A.,Linear equations of the second order of parabolic type, Uspekhi Mat. Nauk,17 No. 3 (1962), 3–147; Russian Math. Surveys,17 No. 3 (1962) 1–143.Google Scholar
  5. [5]
    Johnson R.,Representation theorems and Fatou theorems for second-order linear parabolic partial differential equations, Proc. London Math. Soc. (3),23 (1971), 325–347. Corrigendum, ibid.,25 (1972), 192.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Watson N.A.,Classes of subtemperatures on infinite strips, Proc. London Math. Soc. (3)27 (1973), 723–746.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Watson N.A.,Uniqueness and representation theorems for parabolic equations, J. London Math. Soc. (2),8 (1974), 311–321.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Watson N.A.,Solutions of parabolic equations with initial values locally in L p, J. Math. Anal. Appl.,89 (1982) 86–94.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 1988

Authors and Affiliations

  • N. A. Watson
    • 1
  1. 1.Department of MathematicsUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations