Advertisement

Rendiconti del Circolo Matematico di Palermo

, Volume 37, Issue 1, pp 100–108 | Cite as

A note on indecomposable modules

  • S. Jondrup
  • J. Krempa
  • D. Niewieczerzal
Article

Abstract

In this note we study rings having only a finite number of non isomorphic uniform modules with non zero socle. It is proved that a commutative ring with this property is a direct sum of a finite ring and a ring of finite representation type. In the non commutative case we show that most P.I. rings having only a finite number of non isomorphic modules with non zero socle are in fact artinian.

Keywords

Finite Number Commutative Ring Left Ideal Prime Ring Indecomposable Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Einsenbud D.,Subrings of artinian and noetherian rings, Math. Ann.185 (1970), 247–249.CrossRefMathSciNetGoogle Scholar
  2. [2]
    Einsenbud D., Griffith P.,The structure of serial rings, Pacific J. Math.36 (1971), 109–121.MathSciNetGoogle Scholar
  3. [3]
    Faith C.,Rings, Modules and Categories F, Springer-Verlag Heidelberg/New York, 1973.Google Scholar
  4. [4]
    Jøndrup S.,Indecomposable Modules, Ring Theory, Proceedings of the 1978 Antwerp Conf. Lecture Notes in Pure and Applied Mathematics 51, 97–104, Marcel Dekker, New York.Google Scholar
  5. [5]
    Jøndrup S.,Indecomposable Modules over noetherian rings and fixed point rings of rings of finite type, Arch. der Mathematik,36 (1981), 133–136.MATHCrossRefGoogle Scholar
  6. [6]
    Jøndrup S., Simson D.,Indecomposable Modules over semiperfect rings, Algebra J.73 (1981), 23–29.MATHCrossRefGoogle Scholar
  7. [7]
    Kasch Fr., Oberts U.,Das Zentrum von Ringen mit Kettenbedingungen, Bayerische Akademie der Wissenschaften1 (1970), 160–179.Google Scholar

Copyright information

© Springer 1988

Authors and Affiliations

  • S. Jondrup
    • 1
  • J. Krempa
    • 1
  • D. Niewieczerzal
    • 1
  1. 1.Københauns Univ. Mat. InstitutKøbenhaun øDanmark

Personalised recommendations