Advertisement

On smooth interpolation by continuously connected piecewise polynomials

  • A. C. Ahlin
Article
  • 36 Downloads

Summary

In this paper, a method is presented for interpolating to a given set of equally-spaced points a set of piecewise polynomials of degreen which agree in all derivatives throughn−1 at each of the points. Efficient computing algorithms and theorems, based on recursive difference equations and modern matrix techniques, are developed.

Keywords

Spline Function Spline Interpolation Mesh Point Polynomial Interpolation Interpolation Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. T. Ross,General Description of the APT System, Servo-Mechanisms Laboratory, Mass. Inst. of Tech., vol. 1.Google Scholar
  2. [2]
    H. Stone,Approximation of Curves by Line Segments, Math. Comp., vol. 15, pp. 40–47, (1961).MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    T. J. Rivlin,Smooth Interpolation, SIAM Review, vol. 1, pp. 60–63, (1959).MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    T. J. Rivlin,A Note on Smooth Interpolation, SIAM Review, vol. 2, pp. 27–30, (1960).MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    F. B. Hildebrand,Introduction to Numerical Analysis, New York, McGraw-Hill Co., Inc., pp. 91–121, (1956).MATHGoogle Scholar
  6. [6]
    H. Rutishauser,Notes on Smooth Interpolation, ZAMP, vol. 11, pp. 508–513, (1960).MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    T. N. E. Greville and I. J. Schoenberg,Smoothing by Generalized Spline Functions, SIAM National Meeting, New York, June 7, (1965).Google Scholar
  8. [8]
    E. T. Whittaker and G. Robinson,The Calculus of Observations, London, Blackie and Son, 2nd Ed., (1937).Google Scholar
  9. [9]
    T. N. E. Greville and H. Vaughan,Polynomial Interpolation in Terms of Symbolic Operators, Soc. Actuar. Trans. 6, pp. 413–476, (1954).MathSciNetGoogle Scholar
  10. [10]
    E. N. Nilson and J. H. Ahlberg,Convergence Properties of the Spline Fit, J. SIAM, vol. 11, pp. 95–104, (1963).MATHMathSciNetGoogle Scholar
  11. [11]
    J. L. Walsh, J. H. Ahlberg and E. N. Nilson,Best Approximation Properties of the Spline Fit, J. Math. Mech. II, pp. 225–234, (1962).MathSciNetGoogle Scholar
  12. [12]
    Boris Podolsky and Harry M. Denman,Conditions on Minimization Criteria for Smoothing, Math. Comp. 18, pp. 441–448, (1964).MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Boris Podolsky,Curve Fitting With Allowance for Errors in Given Data, Technical Information Series No. R59 FPD 442, General Electric Company, Lockland, Ohio, July, (1959).Google Scholar
  14. [14]
    J. F. Reilly,On Lidstone’s Demonstration of the Osculatory Interpolation Formula, The Record of the American Institute of Actuar., vol. XIV, Part. 1, Number 29, pp. 12–20, June, (1925).Google Scholar
  15. [15]
    I. J. Schoenberg,Contributions on the Problem of Approximation of Equidistant Data by Analytic Functions, Part A—On the Problem of Smoothing or Graduation. A First Class of Analytic Approximation Formula, Quart. Appl. Math. 4, MF 15945, pp. 45–99, (1946).MathSciNetGoogle Scholar
  16. [16]
    I. J. Schoenberg,Contributions on the Problem of Approximation of Equidistant Data by Analytic Functions, Part B—On the Problem of Osculation Interpolation. A second Class of Analytic Formulae, Quart. Appl. Math. 4, MF 16959, pp. 112–141, (1946).MathSciNetGoogle Scholar
  17. [17]
    W. A. Jenkins,Osculatory Interpolation: New Derivation and Formulae, Record of the American Institute of Actuaries 15, pp. 87, (1926).Google Scholar
  18. [18]
    T. N. E. Greville,The General Theory of Osculatory Interpolation, Transactions of the Actuarial Society of America 45, pp. 202–265, (1944).MathSciNetGoogle Scholar
  19. [19]
    I. J. Schoenberg,On Best Approximation of Linear Operators, Koninki. Nederl. Akad. Van Wetenschappen, Proceedings, Ser. A, Vol. 67, pp. 155–163, (1964).MathSciNetMATHGoogle Scholar
  20. [20]
    I. J. Schoenberg,Spline Interpolation and the Higher Derivatives, Proc. Nat. Acad. Sci. U.S.A., pp. 24–28, (1964).Google Scholar
  21. [21]
    I. J. Schoenberg,On Trigonometric Spline Interpolation, J. Math. Mech. 13, pp. 795–825, (1964).MATHMathSciNetGoogle Scholar
  22. [22]
    I. J. Schoenberg,Spline Interpolation and Best Quadrature Formulae, Bull. Amer. Math. Soc. 70, pp. 143–148, (1964).MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    C. Lanczos,Applied Analysis, Englewood Cliffs, Prentice Hall, Inc., p. 235, (1956).Google Scholar
  24. [24]
    J. C. Holladay,Smoothest Curve Approximation, MTAC, vol. 11, pp. 233–243, (1957).MATHMathSciNetGoogle Scholar
  25. [25]
    J. F. Price and R. H. Simonson,Various Methods and Computer Routines for Approximations, Curve Fittings, and Interpolation, Boeing Scientific Research Laboratories Document D1-82-0151, pp. 12–16, February, (1962).Google Scholar
  26. [26]
    G. Birkhoff and H. L. Garabedian,Smooth Surface Interpolation, J. Math. and Physics, vol. 39, pp. 258–268, (1960).MathSciNetGoogle Scholar
  27. [27]
    M. H. Schultz,L 2-Approximation Theory of Even Order Multivariate Splines, SIAM Journal on Numerical Analysis, vol. 6, no. 3, pp. 467–475, (1969).MATHMathSciNetCrossRefGoogle Scholar
  28. [28]
    A. F. Cornock,The Numerical Solution of Poisson’s and the Bi-Harmonic Equations by Matrices, Proc. Cambridge Phil. Soc., vol. 50, (1954).Google Scholar
  29. [29]
    O. Karlquist,Numerical Solution of Elliptic Differential Equations, Tellus 4, pp. 374–384, (1952).MathSciNetCrossRefGoogle Scholar
  30. [30]
    R. E. von Holdt,Inversion of Triple Diagonal Compound Matrices, J. ACM, vol. 9, pp. 71–83, (1962).MATHCrossRefGoogle Scholar
  31. [31]
    M. J. D. Powell,The Local Dependence of Least Squares Cubic Splines, SIAM Journal on Numerical Analysis, vol. 6, no. 3, pp. 398–413, (1969).MATHMathSciNetGoogle Scholar
  32. [32]
    E. Goursat,A Course in Mathematical Analysis, vol. I, New York, Dover Publications, Inc., pp. 443–451, (1959).MATHGoogle Scholar
  33. [33]
    C. De Boor,Best Approximation Properties of Spline Functions of Odd Degree, J. Math. and Physics, vol. 41, pp. 212–218, (1962).MATHGoogle Scholar

Copyright information

© Springer 1971

Authors and Affiliations

  • A. C. Ahlin
    • 1
  1. 1.SeattleU.S.A.

Personalised recommendations