Non stationary Navier-Stokes flows with vanishing viscosity

  • Bui An Ton


An elementary proof that the solution of the Cauchy problem for the Navier-Stokes equations converges, in an appropriate sense, to the solution of the Euler equations on a small time interval is given. A partial result is given in the case of initial boundary-value problems.


Weak Solution Cauchy Problem Euler Equation Constant Independent Reflexive Banach Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aubin J. P.,Un théoreme de compacité, C. R. Acad. Sc. Paris,256 (1963), 5042–5044.MATHMathSciNetGoogle Scholar
  2. [2]
    Ebin D. G. and Marsden J. E.,Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., (2)97 (1970), 102–163.CrossRefMathSciNetGoogle Scholar
  3. [3]
    Golovkin K. K.,New equations modeling the motion of a viscous fluid and their unique solvability, Trudy Mat. Inst. Steklov,102 (1967), 29–50; Proc. Steklov Inst. Math.,102 (1967), 29–54.MathSciNetGoogle Scholar
  4. [4]
    Kato T.,Non stationary flows of viscous and ideal flows in R 3, J. Functional Analysis, (1972), 296–305.Google Scholar
  5. [5]
    Ladyzenskaya O. A.,New equations for the description of motion of viscous incompressible fluids and solvability in the large of boundary-value problems for them, Trudy Mat. Inst. Steklov102 (1967), 85–104; Proc. Steklov Inst. Math.102 (1967) 95–118.MathSciNetGoogle Scholar
  6. [6]
    —,The Mathematical theory of viscous incompressible fluids, Gordon and Breach, New York, 1969.Google Scholar
  7. [7]
    Lions J. L.,Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969.MATHGoogle Scholar
  8. [8]
    Swann H. S. G.,The convergence with vanishing viscosity of non stationary Navier-Stokes flow to ideal flow in R 3. Trans. Amer. Math. Soc.157 (1971), 373–397.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Visik M. I.,Quasi-linear strongly elliotic systems of differential equations in divergence form, Trudy Moskov Math. Obsc.12, (1963), 125 184; Trans. Moscov Math. Soc (1963), 140–208.MathSciNetGoogle Scholar

Copyright information

© Springer 1978

Authors and Affiliations

  • Bui An Ton
    • 1
  1. 1.Dept. of MathematicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations