Rendiconti del Circolo Matematico di Palermo

, Volume 35, Issue 3, pp 444–447 | Cite as

On the condensation points of the lagrange spectrum

  • M. Pavone


For a positive integerN, L(N) denotes the set of Lagrange values of all sequences (a k:k=0, ±1, ±2,…) of positive integers with lim sup k ak=N. It is shown that for anyN≥3L(N) has infinitely many condensation points. Such points can be realized as Markov values of symmetric doubly periodic sequences whose period consists of a semi-symmetric tuple.


Positive Integer Distinct Element Continue Fraction Accumulation Point Infinite Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Freiman G. A.,Diophantine approximation and the geometry of numbers (Markov's problem). Kalin. Gosud. Univ., Kalinin, 1975.Google Scholar
  2. [2]
    Gbur M. E.,Accumulation points of the Lagrange and Markov spectra. Monaths. Math.84 (1977), 91–108.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Kogoniya P. G.,Condensation points of the set of Markov numbers. Dokl. Akad. Nauk. SSSR (N.S.)118 (1958), 632–635.MathSciNetGoogle Scholar
  4. [4]
    Perron O.,Über die Approximation irrationaler Zahlen durch rationale, I–II. S.-B. Heidelb. Akad. Wiss. Abh.4, (1921), 3–17,8, (1921), 1–12.Google Scholar

Copyright information

© Springer 1986

Authors and Affiliations

  • M. Pavone
    • 1
  1. 1.Department of MathematicsUniversity of California, BerkeleyBerkeleyU.S.A.

Personalised recommendations