Korovkin-type theorems for positive functionals in spaces of continuous affine functions

  • Francesco Altomare


Compact Hausdorff Space Convex Compact Subset Order Banach Space Exposed Face Positive Functional 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Si stabiliscono dei risultati concernenti la convergenza di reti di forme lineari positive verso una prefissata forma lineare positiva nel contesto di spazi di funzioni continue ed affini definite su un insieme convesso compatto. Si presentano degli esempi e delle applicazioni in spazi di funzioni continue, inC *-algebre di operatori su spazi di Hilbert e in spazi di Banach reticolati.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alfsen E.M.,Compact convex sets and boundary integrals, Springer Verlag, Berlin, 1971.MATHGoogle Scholar
  2. [2]
    Altomare F.,Théorèmes de convergence de type Korovkin relativement à une application linéaire positive, Bollettino U.M.I.5 16-B(1979), 1013–1031, Mr81d:41028.MathSciNetGoogle Scholar
  3. [3]
    Altomare F.,Frontiéres abstraites et convergence de familles filtrées de formes linéaires sur les algèbres de Banach commutatives. Séminaire Initiation à l'Analyse: G. Choquet M. Rogalski-J. Saint Raymond, 21e année,6 (1981/82), 19 pp.Google Scholar
  4. [4]
    Cavaretta A.S.,A Korovkin theorem for finitely defined operators, in: Approximation theory, Proc. Intern. Symp. Univ. Texas, Austin, Texas, 1973, 299–305, MR48 #11872.Google Scholar
  5. [5]
    Choquet G.,Lectures on Analysis, Vol. II, W.A. Benjamin, Inc., London, 1969.Google Scholar
  6. [6]
    Dixmier J.,Les C *-algébres et leurs représentations, Gauthier-Villars, Paris, 1964.Google Scholar
  7. [7]
    Ferguson L.B.O., Rusk M.D.,Korovkin sets for an operator on a space of continuous functions, Pacific J. Math. 65, N. 2 (1976), 337–345, MR54#8117.MATHMathSciNetGoogle Scholar
  8. [8]
    Jimenéz-Pozo, M.A.,Convergence of sequences of linear functionals, Z. Angew. Math. Mech. 61 (1981), n. 10, 495–500, MR83b:41024.CrossRefMathSciNetGoogle Scholar
  9. [9]
    Kadison R.V.,Lectures on operator algebras, Cargese Lecture in Theoretical Physics, p. 41–82, Gordon and Breach Science Publishers, New York, 1967.Google Scholar
  10. [10]
    Klimov V.S., Krasnosel'Skii M.A., Lifsic E.A.,Smoothness points of a cone and convergence of positive functionals and operators, Trans. Moscow Math. Soc; 1966, 61–77, MR34 8149.Google Scholar
  11. [11]
    Kutateladze S.S., Rubinov, A.M.,Minkowski duality and its applications, Russian Math. Surveys 27(3), (1972) 137–191, MR52#14922.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Labsker, L.G.,Weak convergence of sequences of positive linear functionals, Soviet Math. Dokl. Vol. 12 (1971), n. 2, 669–673, MR43#6697.MATHGoogle Scholar
  13. [13]
    Labsker L.G.,Korovkin sets in Banach spaces for sets of linear functionals, Math. Notes 25 (1979), n. 3–4, 47–56, MR83f:46016.MathSciNetGoogle Scholar
  14. [14]
    Limaye B., Shirali S.,Korovkin's theorem for positive functionals on *-normed algebras, J. Indian Math. Soc. 40 (1976), 163–172.MATHMathSciNetGoogle Scholar
  15. [15]
    Limaye B.V., Namboodiri M.N.N.,Approximation by positive functionals, J. Indian Math. Soc. (N.S.) 43 (1979), n. 1–4, 195–202 (1980), MR84e: 46059.MathSciNetGoogle Scholar
  16. [16]
    Micchelli C.A.,Chebyshev subspaces and convergence of positive linear operators, Proc. Amer. Math. Soc. Vol. 40, n. 2, 1973, 448–452, MR48#6787.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Schaefer H.H.,Banach lattices and positive operators, Springer-Verlag, Berlin, Heidelberg, New York, 1974.MATHGoogle Scholar
  18. [18]
    Wille R.,Korovkin approximation of homomorphisms in involution algebras, Arch. Math., Vol. 45, (1985) 549–554.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 1987

Authors and Affiliations

  • Francesco Altomare
    • 1
  1. 1.Istituto di MatematicaUniversità della BasilicataPotenza(Italia)

Personalised recommendations