Advertisement

Rendiconti del Circolo Matematico di Palermo

, Volume 24, Issue 3, pp 255–266 | Cite as

Sulla permanenza degli anelli di krull e completamente integralmente chiusi rispetto a certi tipi di omomorfismi

  • Renato Maggioni
  • Alfio Ragusa
Article

Summary

In this paper we extend the property of a ringA to be of finite real character to loc-étaleA-algebras and to loc-étale neighbourhoods by a suitable representation of these algebras. By this means we get some result on the property to be completely integrally closed for loc-ind-étaleA-algebras and henselizations. We conclude by a counter-example which shows that the properties to be Krull and completely integrally closed are not preserved in the henselization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. [1]
    N. Bourbaki,Algèbre Commutative, Cap. V e VI, Paris, Hermann, 1964.Google Scholar
  2. [2]
    N. Bourbaki,Algèbre Commutative, Cap. VII, Paris, Hermann, 1965.Google Scholar
  3. [3]
    M. Chabert,Anneaux de polynomes à valeurs entieres, Bull. Soc. Math. France, t. 99 (1971), pagg. 273–283.MATHMathSciNetGoogle Scholar
  4. [4]
    R. Gilmer,Multiplicative ideal theory, New York, Dekker, 1972.MATHGoogle Scholar
  5. [5]
    S. Greco,Henselization of a ring with respect to an ideal, Trans. of A. M. S., vol. 144 (1969), pagg. 43–65.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    S. Greco,Anelli henseliani in Categories and Commutative Algebra, Corso Cime, ed. Cremonese, Roma 1973.Google Scholar
  7. [7]
    A. Grothendieck et J. Dieudonné,Eléments de Geometrie Algébrique, I, I.H.E.S., Publ. Math.Google Scholar
  8. [8]
    J. P. Lafon,Anneaux hénséliens, Bull. Soc. Math. France, 91 (1963), pagg. 77–107.MATHMathSciNetGoogle Scholar
  9. [9]
    F. Mora,Permanenza di proprietà nella henselizzazione degli anelli non noetheriani, Rend. Sem. Mat. Padova, 1973, pagg. 137–156.Google Scholar
  10. [10]
    M. Nagata,Local rings, Interscience Publ., 1962.Google Scholar
  11. [11]
    M. Raynaud,Anneaux locaux hénséliens, Berlin, Springer-Verlag, 169 (1970).MATHGoogle Scholar
  12. [12]
    R. Strano,Sulla henselizzazione degli anelli di valutazione e degli anelli di Prüfer, Rend. Sem. Mat. Padova, vol. LII (1974), pagg. 167–183.MathSciNetGoogle Scholar
  13. [13]
    O. Zariski and P. Samuel,Commutative Algebra, Princeton, D. Van Nostrand Co. Inc., 1958.MATHGoogle Scholar

Copyright information

© Springer 1975

Authors and Affiliations

  • Renato Maggioni
    • 1
  • Alfio Ragusa
    • 1
  1. 1.Catania

Personalised recommendations