An insight into the self-discharge of Fe3O4 electrodes in alkali solutions

  • M. Jayalakshmi
  • V. S. Muralidharan
Physical and Theoretical


Iron oxide development is necessary as the Iron electrodes exhibit high self discharge and poor charging efficiency in alkaline batteries. Pressed electrodes containing electrolytic iron powder with varying amounts of Fe3O4 have been used. The variation of open circuit potential and self discharge currents with alkali concentration is followed. For better understanding of these variations, cyclic polarisation (−1.3 V to + 0.4 Vvs Hg/HgO) and hydrogen evolution studies are carried out. Beyond −0.5 Vvs Hg/HgO, the surface is covered by hydrolysed layer and the protons diffuse away from this layer. The hydrogen evolution takes place with the discharge of K+ ions as the rate determining step.


Corrosion cyclic voltammetry iron oxide electrodes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed S M 1969J. Phys. Chem. 73 3546CrossRefGoogle Scholar
  2. Ahmed S M 1972The anodic behaviour of metals and Semi Conductors ed. Diggle Vol.1, p 463Google Scholar
  3. Blok L and de Bruyn P L 1970J. Colloid. Interface Sci. 32 518, 527CrossRefGoogle Scholar
  4. Burke L D and Lyons M E G 1986J. Electroanal. Chem. Interfacial Electrochem 198 347Google Scholar
  5. Cerny J and Micka K 1989J. Power Sources 25 111CrossRefGoogle Scholar
  6. Dibrov I A, Chervyak Voronish S M, Grigoreva T V and Kozlova G M 1980Electrokhimiya 16 786Google Scholar
  7. Falk S V and Salkind A J 1969Alkaline Storage batteries (John Wiley & Sons Inc. NY) 94Google Scholar
  8. Flerov V N, Uzinger L V and Pavlova L I 1964Zh. Prikl. Khim 37 373Google Scholar
  9. Flerov V N, Pavlova L I and Uzinger L V 1965Zh. Prikl. Khim 38 569Google Scholar
  10. Galushko V P, Zavagorodnaya E F and Galvoronskaya L K 1960Zh. Prikl. Khim 33 1546Google Scholar
  11. Galushko V P, Zavagorodnyaya E F and Afanasenko V I 1961Zh. Prikl. Khim 34 1271Google Scholar
  12. Labat J, Jarousseau J C and Laurent J F 1970Power sources 3 Proc. 7th International Symposium, Brighton, 283Google Scholar
  13. Lishanski L M, Fantgof V M and Efremov B N 1982Electrokhimiya 18 644Google Scholar
  14. Micka K and Zabransky Z 1987J. Power Sources 19 315CrossRefGoogle Scholar
  15. Muralidharan V S and Rajagopalan K S 1978J. Electronal Interfacial Electrochem 94 21Google Scholar
  16. Muralidharan V S and Veerashanmugamani M 1985J. Appl. Electrochem. 15 675CrossRefGoogle Scholar
  17. Muralidharan V S 1988B. Electrochem 4 651Google Scholar
  18. Paruthimal Kalaignan G, Muralidharan V S and Vasu K I 1985Proceedings of the annual technical meeting of Electrochemical Society, 32Google Scholar
  19. Paruthimal Kalaignan G, Muralidharan V S and Vasu K I 1987J. Appl. Electrochem 17 1083CrossRefGoogle Scholar
  20. Sato N 1989Corrosion 45 354Google Scholar
  21. Schindler P W, Walti B and Furst B 1976Chimica 30 107Google Scholar
  22. Sigg L and Stumn W 1980/81Colloids Surf 2 101CrossRefGoogle Scholar
  23. Teplinskaya T K, Fedorova N N and Rozenstsveig S A 1964Zh. Fiz. Khim 38 2167Google Scholar
  24. Thangavel K, Muralidharan V S and Rajagopalan K S 1982,J. Electrochem Soc. (India)31 49Google Scholar

Copyright information

© Indian Academy of Sciences 1991

Authors and Affiliations

  • M. Jayalakshmi
    • 1
  • V. S. Muralidharan
    • 1
  1. 1.Central Electrochemical Research InstituteKaraikudiIndia

Personalised recommendations