Neurochemical Pathology

, Volume 5, Issue 3, pp 221–236 | Cite as

The development of rubrospinal, cerebellorubral, and corticorubral connections in the North American opossum

Evidence for asynchronism
  • G. F. Martin
  • T. Cabana
  • J. C. Hazlet


We have employed axonal transport and degeneration techniques to study the development of major rubral connections in the North American opossum. Opposums were chosen for study because they are born. 12 d after conception and have a protracted postnatal development. Our results suggest that: (1) The red nucleus innervates the spinal cord early in development, well before the somatic motor-sensory cortex (Cabana and Martin, 1984); (2) the red nucleus projects to the spinal cord before it receives substantial projections from the cerebellum or cerebral cortex; and (3) projections from the cerebellum reach the red nucleus significantly earlier than those from the cerebral cortex.

Index Entries

Rubrospinal connections, in North American opossum cerebellorubral connections, in North American opossum corticorubral connections, in North American opossum asynchronism, evidence for axonal transport rubral connections, development of 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bangma G. C., ten Donkelaar H. J., Dederen P. J. W., and de Boer-van Huisen R. (1984) Cerebellar efferents in the lizardVaranus exanthematicus. II. Projections of the cerebellar nuclei.J. Comp. Neurol. 230, 218–230.PubMedCrossRefGoogle Scholar
  2. Bregman B. S. and Goldberger M. E. (1982) Anatomical plasticity and sparing of function after spinal cord damage in neonatal cats.Science 217, 553–555.PubMedCrossRefGoogle Scholar
  3. Bregman B. S. and Goldberger M. E. (1983). Infant lesion effect: III. Anatomical correlates of sparing and recovery of function after spinal cord damage in newborn and adult cats.Devel. Brain Res. 9, 137–154.CrossRefGoogle Scholar
  4. Cabana T. and Martin G. F. (1984) Developmental sequence in the origin of descending spinal pathways. Studies using retrograde transport techniques in the North American opossum (Didelphis virginiana).Devel. Brain. Res. 15, 247–263.CrossRefGoogle Scholar
  5. Cabana T. and Martin G. F. (1985) Corticospinal development in the North American opossum: Evidence for a sequence in the growth of cortical axons in the spinal cord and for transient projections.Devel. Brain Res. 23, 69–80.CrossRefGoogle Scholar
  6. Crutcher K. A., Humbertson A. O., and Martin G. F. (1978) The origin of brain-stem-spinal pathways in the North American opossum (Didelphis virginiana). Studies using the horseradish peroxidase method.J. Comp. Neurol. 179, 160–194.Google Scholar
  7. Cutts J. H., Krause W. W., and Leeson C. R. (1978) General observations on the growth and development of the pouch young opossum,Didelphis virginiana.Biol. of the Neonate 33, 264–272.Google Scholar
  8. DeOlmos J. S. (1977) An improved method for the study of the central nervous connections.Exp. Brain Res. 29, 541–551.CrossRefGoogle Scholar
  9. Hartman C. G. (1952)Possums. University of Texas, Austin.Google Scholar
  10. King J. S., Martin G. F., and Conner J. B. (1972) A light and electron microscopic study of corticorubral projections in the opossum (Didelphis marsupialis virginiana).Brain Res. 38, 251–265.PubMedCrossRefGoogle Scholar
  11. King J. S., Dom R. M., Conner J. B., and Martin G. F. (1973) An experimental light and electron microscopic study of cerebellorubral projections in the opossum,Didelphis marsupialis virginiana.Brain Res. 52, 61–78.PubMedCrossRefGoogle Scholar
  12. Leonard C. M. (1973) A method for assessing stages of neuronal maturation.Brain Res. 53, 412–416.PubMedCrossRefGoogle Scholar
  13. Leonard C. M. (1974) Degeneration argyrophilia as an index of neuronal maturation: Studies on the optic tract of the golden hamster.J. Comp. Neurol. 156, 435–458.PubMedCrossRefGoogle Scholar
  14. Martin G. F. and Cabana T. (1985) Cortical projections to superficial laminae of the dorsal horn and to the ventral horn of the spinal cord in the North American opossum. Studies using the orthograde transport of WGA-HRP.Brain Res. 337, 188–192.PubMedCrossRefGoogle Scholar
  15. Martin G. F. and Dom R. (1970) The rubrospinal tract of the opossum,Didelphis virginiana.J. Comp. Neurol. 138, 19–30.PubMedCrossRefGoogle Scholar
  16. Martin G. F. and Fisher A. M. (1968) A further evaluation of the origin, the course and the termination of the opossum corticospinal tract.J. Neurol. Sci. 7, 177–187.PubMedCrossRefGoogle Scholar
  17. Martin G. F., Dom R., Katz S., and King J. S. (1974a) The organization of projection neurons in the opossum red nucleus.Brain Res. 78, 17–34.PubMedCrossRefGoogle Scholar
  18. Martin G. F., King J. S., and Dom R. (1974b) The projections of the deep cerebellar nuclei of the opossum,Didelphis virginiana.J. Hirnforsch. 15, 545–573.Google Scholar
  19. Martin G. F., Beattie M. S., Bresnahan J. C., Henkel C. K., and Hughes H. C. (1975a) Cortical and brainstem projections to the spinal cord of the American opossum,Didelphis marsupialis virginiana.Brain, Beh. and Evol. 12, 270–310.CrossRefGoogle Scholar
  20. Martin G. F., Bresnahan, J. D., Henkel, C. K., and Megirian, D. (1975b) Corticobulbar fibers in the North American opossum (Didelphis marsupialis virginiana) with notes on the Tasmanian brush-tailed opossum (Trichosurus vulpecula) and other marsupials.J. Anat. (Lond.) 120, 433–438.Google Scholar
  21. Martin G. F., Beals J. K., Culberson J. L., Dom R., Goode G., and Humbertson A. O. (1978) Observations on the development of brainstem-spinal systems in the North American opossum.J. Comp. Neurol. 181, 271–289.PubMedCrossRefGoogle Scholar
  22. Martin G. F., Cabana T., and Humbertson A. O. (1981) Evidence for lack of rubrospinal somatotopy in the North American opossum and for collateral innervation of the cervical and lumbar enlargements by single rubral neurons.J. Comp. Neurol. 201, 255–263.PubMedCrossRefGoogle Scholar
  23. Martin G. F., Cabana T., and Waltzer R. (1983) Anatomical demonstration of the location and collaterization of rubral neurons which project to the spinal cord, lateral brainstem and inferior olive of the North American opossum.Brain Beh. Evol. 23, 93–109.Google Scholar
  24. McCrady E. (1938) The embryology of the opossum.Am. Anat. Memoirs, No. 16, The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania.Google Scholar
  25. Mesulam M. M. (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: A non-carcinogenic blue reaction product with superior sensitivity for visualizing afferents and efferents.J. Histochem. Cytochem. 26, 106–117.PubMedGoogle Scholar
  26. Okado N. and Oppenheim R. W. (1985) The onset and development of descending pathways to the spinal cord in the chick embryo.J. Comp. Neurol. 232, 143–161.PubMedCrossRefGoogle Scholar
  27. ten Donkelaar H. J. and deBoer-van Huizen R. (1982) Observations on the development of descending pathways from the brainstem to the spinal cord in the clawed toadXenopus laevis.Anatomy Embrol. 163, 461–473.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1986

Authors and Affiliations

  • G. F. Martin
    • 1
  • T. Cabana
    • 1
  • J. C. Hazlet
    • 2
  1. 1.Department of Anatomy and Neuroscience Research Laboratory, College of MedicineThe Ohio State UniversityColumbus
  2. 2.Department of AnatomyWayne State University School of MedicineDetroit

Personalised recommendations