Skip to main content
Log in

The development of rubrospinal, cerebellorubral, and corticorubral connections in the North American opossum

Evidence for asynchronism

  • Published:
Neurochemical Pathology

Abstract

We have employed axonal transport and degeneration techniques to study the development of major rubral connections in the North American opossum. Opposums were chosen for study because they are born. 12 d after conception and have a protracted postnatal development. Our results suggest that: (1) The red nucleus innervates the spinal cord early in development, well before the somatic motor-sensory cortex (Cabana and Martin, 1984); (2) the red nucleus projects to the spinal cord before it receives substantial projections from the cerebellum or cerebral cortex; and (3) projections from the cerebellum reach the red nucleus significantly earlier than those from the cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bangma G. C., ten Donkelaar H. J., Dederen P. J. W., and de Boer-van Huisen R. (1984) Cerebellar efferents in the lizardVaranus exanthematicus. II. Projections of the cerebellar nuclei.J. Comp. Neurol. 230, 218–230.

    Article  PubMed  CAS  Google Scholar 

  • Bregman B. S. and Goldberger M. E. (1982) Anatomical plasticity and sparing of function after spinal cord damage in neonatal cats.Science 217, 553–555.

    Article  PubMed  CAS  Google Scholar 

  • Bregman B. S. and Goldberger M. E. (1983). Infant lesion effect: III. Anatomical correlates of sparing and recovery of function after spinal cord damage in newborn and adult cats.Devel. Brain Res. 9, 137–154.

    Article  Google Scholar 

  • Cabana T. and Martin G. F. (1984) Developmental sequence in the origin of descending spinal pathways. Studies using retrograde transport techniques in the North American opossum (Didelphis virginiana).Devel. Brain. Res. 15, 247–263.

    Article  Google Scholar 

  • Cabana T. and Martin G. F. (1985) Corticospinal development in the North American opossum: Evidence for a sequence in the growth of cortical axons in the spinal cord and for transient projections.Devel. Brain Res. 23, 69–80.

    Article  Google Scholar 

  • Crutcher K. A., Humbertson A. O., and Martin G. F. (1978) The origin of brain-stem-spinal pathways in the North American opossum (Didelphis virginiana). Studies using the horseradish peroxidase method.J. Comp. Neurol. 179, 160–194.

    Google Scholar 

  • Cutts J. H., Krause W. W., and Leeson C. R. (1978) General observations on the growth and development of the pouch young opossum,Didelphis virginiana.Biol. of the Neonate 33, 264–272.

    CAS  Google Scholar 

  • DeOlmos J. S. (1977) An improved method for the study of the central nervous connections.Exp. Brain Res. 29, 541–551.

    Article  CAS  Google Scholar 

  • Hartman C. G. (1952)Possums. University of Texas, Austin.

    Google Scholar 

  • King J. S., Martin G. F., and Conner J. B. (1972) A light and electron microscopic study of corticorubral projections in the opossum (Didelphis marsupialis virginiana).Brain Res. 38, 251–265.

    Article  PubMed  CAS  Google Scholar 

  • King J. S., Dom R. M., Conner J. B., and Martin G. F. (1973) An experimental light and electron microscopic study of cerebellorubral projections in the opossum,Didelphis marsupialis virginiana.Brain Res. 52, 61–78.

    Article  PubMed  CAS  Google Scholar 

  • Leonard C. M. (1973) A method for assessing stages of neuronal maturation.Brain Res. 53, 412–416.

    Article  PubMed  CAS  Google Scholar 

  • Leonard C. M. (1974) Degeneration argyrophilia as an index of neuronal maturation: Studies on the optic tract of the golden hamster.J. Comp. Neurol. 156, 435–458.

    Article  PubMed  CAS  Google Scholar 

  • Martin G. F. and Cabana T. (1985) Cortical projections to superficial laminae of the dorsal horn and to the ventral horn of the spinal cord in the North American opossum. Studies using the orthograde transport of WGA-HRP.Brain Res. 337, 188–192.

    Article  PubMed  CAS  Google Scholar 

  • Martin G. F. and Dom R. (1970) The rubrospinal tract of the opossum,Didelphis virginiana.J. Comp. Neurol. 138, 19–30.

    Article  PubMed  CAS  Google Scholar 

  • Martin G. F. and Fisher A. M. (1968) A further evaluation of the origin, the course and the termination of the opossum corticospinal tract.J. Neurol. Sci. 7, 177–187.

    Article  PubMed  CAS  Google Scholar 

  • Martin G. F., Dom R., Katz S., and King J. S. (1974a) The organization of projection neurons in the opossum red nucleus.Brain Res. 78, 17–34.

    Article  PubMed  CAS  Google Scholar 

  • Martin G. F., King J. S., and Dom R. (1974b) The projections of the deep cerebellar nuclei of the opossum,Didelphis virginiana.J. Hirnforsch. 15, 545–573.

    Google Scholar 

  • Martin G. F., Beattie M. S., Bresnahan J. C., Henkel C. K., and Hughes H. C. (1975a) Cortical and brainstem projections to the spinal cord of the American opossum,Didelphis marsupialis virginiana.Brain, Beh. and Evol. 12, 270–310.

    Article  CAS  Google Scholar 

  • Martin G. F., Bresnahan, J. D., Henkel, C. K., and Megirian, D. (1975b) Corticobulbar fibers in the North American opossum (Didelphis marsupialis virginiana) with notes on the Tasmanian brush-tailed opossum (Trichosurus vulpecula) and other marsupials.J. Anat. (Lond.) 120, 433–438.

    Google Scholar 

  • Martin G. F., Beals J. K., Culberson J. L., Dom R., Goode G., and Humbertson A. O. (1978) Observations on the development of brainstem-spinal systems in the North American opossum.J. Comp. Neurol. 181, 271–289.

    Article  PubMed  CAS  Google Scholar 

  • Martin G. F., Cabana T., and Humbertson A. O. (1981) Evidence for lack of rubrospinal somatotopy in the North American opossum and for collateral innervation of the cervical and lumbar enlargements by single rubral neurons.J. Comp. Neurol. 201, 255–263.

    Article  PubMed  CAS  Google Scholar 

  • Martin G. F., Cabana T., and Waltzer R. (1983) Anatomical demonstration of the location and collaterization of rubral neurons which project to the spinal cord, lateral brainstem and inferior olive of the North American opossum.Brain Beh. Evol. 23, 93–109.

    CAS  Google Scholar 

  • McCrady E. (1938) The embryology of the opossum.Am. Anat. Memoirs, No. 16, The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania.

    Google Scholar 

  • Mesulam M. M. (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: A non-carcinogenic blue reaction product with superior sensitivity for visualizing afferents and efferents.J. Histochem. Cytochem. 26, 106–117.

    PubMed  CAS  Google Scholar 

  • Okado N. and Oppenheim R. W. (1985) The onset and development of descending pathways to the spinal cord in the chick embryo.J. Comp. Neurol. 232, 143–161.

    Article  PubMed  CAS  Google Scholar 

  • ten Donkelaar H. J. and deBoer-van Huizen R. (1982) Observations on the development of descending pathways from the brainstem to the spinal cord in the clawed toadXenopus laevis.Anatomy Embrol. 163, 461–473.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, G.F., Cabana, T. & Hazlet, J.C. The development of rubrospinal, cerebellorubral, and corticorubral connections in the North American opossum. Neurochemical Pathology 5, 221–236 (1986). https://doi.org/10.1007/BF02842937

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02842937

Index Entries

Navigation