Advertisement

Chinese Journal of Oceanology and Limnology

, Volume 23, Issue 4, pp 469–474 | Cite as

Oxygen consumption and ammonia-N excretion ofMeretrix meretrix in different temperature and salinity

  • Tang Baojun
  • Liu Baozhong
  • Yang Hongsheng
  • Xiang Jianhai
Biology

Abstract

Effects of temperatures and salinities on oxygen consumption and ammonia-N excretion rate of clamMeretrix meretrix were studied in laboratory from Oct. 2003 to Jan. 2004. Two schemes were designed in incremented temperature at 10, 15, 20, 25°C at 31.5 salinity and in incremented salinity at 16.0, 21.0, 26.0, 31.5, 36.0, and 41.0 at 20°C, all for 8–10 days. From 10 to 25°C, both respiration and excretion rate were increased. One-way ANOVA analysis demonstrated significant difference (P<0.01) in physiological parameters in this temperature range except between 15 and 20°C. The highestQ 10 thermal coefficient value (12.27) was acquired between 10 and 15°C, and about 1 between 15 and 20°C, indicatingM. meretrix could well acclimate to temperature changes in this range. Salinity also had significant effects on respiration and excretion rate (P<0.05). The highest values of respiration and excretion rate ofM. meretrix were recorded at 16.0 salinity (20°C). These two physiological parameters decreased as salinity increased until reached the minimumQ 10 value at 31.5 (20°C), then again, these parameters increased with increasing salinity from 31.5 to 41.0.M. meretrix can catabolize body protein to cope with osmotic pressure stress when environmental salinity is away from its optimal range. No significant difference was observed between 26.0 and 36.0 in salinity (P>0.05), suggesting that a best metabolic salinity range for this species is between 26.0 and 36.0.

Key words

Meretrix meretrix temperature salinity oxygen consumption rate ammonia-N excretion rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayne, B. L. and R. C. Newell, 1983. Physiological energetics of marine mollusks.The Mollusca 4(1): 407–515.Google Scholar
  2. Beiras, R., P. Camacho and M. Albentosa, 1995. Short-term and long-term alterations in the energy budget of young oysterOstrea edulis L. in response to temperature change.J. Exp. Mar. Biol. Ecol. 186: 221–236.CrossRefGoogle Scholar
  3. Carfoot, T. H., 1987. Animal Energetics. Academic Press, New York, p. 89–172.Google Scholar
  4. Davenport, J., 1979. IsMytilus edulis a short term osmo-regulator.Comp. Biochem. Physiol. 64A: 91–95.CrossRefGoogle Scholar
  5. Diehl, W. J., 1986. Osmoregulation in echinoderms.Comp. Biochem. Physiol. 84A: 199–205.CrossRefGoogle Scholar
  6. Farmer, L. and M. R. Reeve, 1978. Role of the amino acid pool of the copepodAcartia tonsa in adjustment to salinity change.Mar. Biol. 48: 311–316.CrossRefGoogle Scholar
  7. Feng, S. Z. and F. Q. Wang, 1999. Introduction to Marine Science, Science Press, Beijing.Google Scholar
  8. Gaudy, R., G. Cervetto and M. Pagano, 2000. Comparison of the metabolism ofAcartia clausi andA. tonsa: influence of temperature and salinity.J. Exp. Mar. Biol. Ecol. 247: 51–65.CrossRefGoogle Scholar
  9. Glover, T. and K. Mitchell, 2001. An Introduction to Biostatistics (reprinted). McGraw-Hill Book Company. New York.Google Scholar
  10. Good, D. W., M. A. Knepper and M. B. Burg, 1984. Ammonia and bicarbonate transport by thick ascending limb of rat kidney.Am. J. Physiol. 247: F35-F44.Google Scholar
  11. Hutchinson, S. and L. E. Hawkins, 1992. Quantification of the physiological responses of the European flat oysterostrea edulis L. to temperature and salinity.J. Moll. Stud. 58: 215–226.CrossRefGoogle Scholar
  12. Kinne, O., 1964. Salinity and temperature combinations. Oceanogr.Mar. Biol. Annu. Rev. 2: 281–339.Google Scholar
  13. Navarro, J. M. and C. M. Gonzalez, 1998. Physiological response of the Chilean scallopArgopecten purpuratus to decreasing salinities.Aquaculture 167: 315–327.CrossRefGoogle Scholar
  14. Navarro, J. M., 1988. The effects of salinity on the physiological ecology ofChoromytilus chorus (Molian, 1782).J. Exp. Mar. Biol. Ecol. 122: 19–33.CrossRefGoogle Scholar
  15. Newell, R. C. and G. M. Branch, 1980. The influence of temperature on the maintenance of metabolic energy balance in marine invertebrates.Adv. Mar. Biol. 17: 329–396.CrossRefGoogle Scholar
  16. Newell, R. C., L. G. Johnson and L. H. Kofoed, 1977. Adjustment of the components of energy balance in response to temperature change inOstrea edulis.Oecologia 30: 97–110.CrossRefGoogle Scholar
  17. Petro, E. S., O. Lucīa and M. Mario, 2004. Effect of temperatrue on oxygen consumption and ammonia excretion in the Calafia mother-of-pearl oyster,Pinctada mazatlanica (Hanley, 1856).Aquaculture 229: 377–387.CrossRefGoogle Scholar
  18. Shumway, S. E., 1982. Oxygen consumption in oysters: an overview.Mar. Biol. Lett. 3: 1–23.Google Scholar
  19. Silvia, G. J., U. R. Abel Antonio, V. O. Francisco et al., 2004. Ammonia efflux rates and free amino acid levels inLitopenaeus vannamei postlarvae during sudden salinity changes.Aquaculture 233: 573–581.CrossRefGoogle Scholar
  20. Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method.Limnol. Oceanogr. 14: 799–801.CrossRefGoogle Scholar
  21. Stickland, J. D. H. and T. R. Parsons, 1968. A practical handbook of seawater analysis.Fish. Res. Board Can. Bull. 167: 1–11.Google Scholar
  22. Stickle, W. B. and B. L. Bayne, 1982. Effects of temperature and salinity on oxygen consumption and nitrogen excretion inThais (Nucella) lapillus (L.).J. Exp. Mar. Biol. Ecol. 58: 1–17.CrossRefGoogle Scholar
  23. Stickle, W. B. and T. D. Sabourin, 1979. Effects of salinity on the respiration and heart rate of the common mussel,Mytilus edulis L., and the black chiton,Katherina tunicata (Wood).J. Exp. Mar. Biol. Ecol. 41: 257–268.CrossRefGoogle Scholar
  24. Tiffany, D. T. and M. L. John, 2002. The effect of salinity on respiration, excretion, regeneration and production inOphiophragmus filograneus.J. Exp. Mar. Biol. Ecol. 275: 1–14.CrossRefGoogle Scholar
  25. Towle, K. W. and T. Holleland, 1987. Ammonium ion substitute for K+ in ATP-dependent Na+ transport by basolateral membrane vesicles.Am. J. Physiol. 252: R479-R489.Google Scholar
  26. Vernberg, W. B. and F. J. Vernberg, 1972. Environmental Physiological of Marine Animals. Springer, New York.Google Scholar
  27. Wang, J., Z. H. Jiang and Q. S. Tang, 2002. Oxygen consumption and ammonia-N excretion rates ofChlamys farreri.Chin. J. Appl. Ecol. 13(9): 1 157–1 160. (in Chinese with English abstract)Google Scholar
  28. Widdows, J. and B. L. Bayne, 1971. Temperature acclimation ofMytilus edulis with reference to its energy budget.J. Mar. Biol. Assoc. UK 51: 109–124.Google Scholar
  29. Widdows, J., 1973a. Effect of temperature and food on the heart beat, ventilation rate and oxygen uptake ofMytilus edulis.Mar. Biol. 20: 276–296.CrossRefGoogle Scholar
  30. Widdows, J., 1973b. The effects of temperature on the metabolism and activity ofMytilus edulis.Neth. J. Sea. Res. 7: 387–398.CrossRefGoogle Scholar
  31. Wouter, Z. and D. Z. Albertus, 1981. The role of amino acids in anaerobiosis and osmoregulation in bivalves.J. Exp. Zool. 215: 315–325.CrossRefGoogle Scholar
  32. Wright, P. A., 1995. Nitrogen excretion: three end products, many physiological roles.J. Exp. Biol. 198: 273–281.Google Scholar
  33. Yancy, P. H., M. C. Clark, S. C. Hand et al., 1982. Living with water stress: evolution of osmolyte systems.Science 217: 1 214–1 222.Google Scholar
  34. Yang, H. S., P. Wang, T. Zhang et al., 1998. Effects of temperature on respiration and excretion ofArgopecten irradians concentricus.Acta. Oceanol. Sin. 20(2): 91–95. (in Chinese with English abstract)Google Scholar
  35. Yukihira, H., J. S. Lucas and D. W. Klumpp, 2000. Comparative effects of temperature on suspension feeding and energy budgets of the pearl oystersPinctada margaritifera andP. maxima.Mar. Ecol. Prog. Ser. 195: 179–188.CrossRefGoogle Scholar
  36. Zurburg, W. and A. Dezwaan, 1981. The role of amino acids in anaerobiosis and osmoregulation in bivalves.J. Exp. Zool. 215: 315–325.CrossRefGoogle Scholar

Copyright information

© Science Press 2005

Authors and Affiliations

  • Tang Baojun
    • 1
    • 2
  • Liu Baozhong
    • 1
  • Yang Hongsheng
    • 1
  • Xiang Jianhai
    • 1
  1. 1.Institute of OceanologyChinese Academy of SciencesChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations