Chinese Journal of Oceanology and Limnology

, Volume 23, Issue 4, pp 442–447 | Cite as

Isolation, cloning and sequencing of AFLP markers related to disease-resistance traits inFenneropenaeus chinensis

  • Yue Zhiqin
  • Wang Weiji
  • Kong Jie
  • Dai Jixun


Amplified fragment length polymorphism (AFLP) technique was used to analyze the fingerprinting of four successive generations ofFenneropenaeus chinensis to reveal their disease-resistance traits. Some loci showed quite different genetic frequencies due to artificial selection, which implied that these fragments were putative markers related to the disease-resistance trait. We developed a simple and effective method to further characterize these AFLP fragments. Specific AFLP bands were cut directly from polyacrylamide gels, re-amplified, cloned and sequenced. Eight putative genetic markers were sequenced and their sizes ranged from 63 to 209 bp. The sequences were submitted to dbGSS (database of Genome Sequence Survey); and the BLAST analysis showed low similarity to the function genes, indicating these markers were tightly linked to a disease-resistance trait but were not functional genes.

Key words

AFLP Fenneropenaeus chinensis disease-resistance trait markers clone sequence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agresti, J. J., S. Seki, A. Cnaani, S. Poompuang, E. M. Hallerman, N. Umiel, G. Hulata, G. A. E. Gall, and B. May, 2000. Breeding new strains of tilapia: development of an artificial center of origin and linkage map based on AFLP and microsatellite loci.Aquac. 185: 43–56.CrossRefGoogle Scholar
  2. Alonso-Blanco, C., A. J. M. Peeters, M. Koornneef, C. Lister, C. Dean, N. van den Bosch, J. Pot, and M. T. R. Kuiper, 1998. Development of an AFLP based linkage map of Ler, Col, and CviArabidopsis thalianan ecotypes and construction of a Ler/Cvi recombinant inbred line population.Plant J. 14: 259–271.CrossRefGoogle Scholar
  3. Becker, J., P. Vos, M. Juiper, F. Salamini, and M. Heun, 1995. Combined mapping of AFLP and RFLP markers in barley.Mol. Gen. Genet. 249: 65–73.CrossRefGoogle Scholar
  4. Cho, Y. G., M. W. Blair, O. Panaud, and S. R. McCouch, 1996. Cloning and mapping of variety-specific rice genomic DNA sequences amplified fragment length polymorphisms (AFLP) from silver-stained polyacrylamide gels.Genome 39: 373–378.Google Scholar
  5. Congiu, L., I. Dupanloup, T. Patarnello, F. Fontana, R. Rossi, G. Arlati, and L. Zane, 2001. Identification of interspecific hybrids by amplified fragment length polymorphism: the case of sturgeon.Mol. Ecol. 10: 2355–2359.CrossRefGoogle Scholar
  6. Deng, J. Y., C. C. Ye, and Y. C. Liu, 1990.Penaeus chinensis in the Bohai and Yellow Seas-its Biology and Management. Ocean Press, Beijing, China, p. 36–164. (in Chinese)Google Scholar
  7. English, L. J., J. A. Nell, G. B. Maguire, and R. D. Ward, 2001. Allozyme variation in the three generations of whole weight in Sydney rock oysters (Saccostrea golmerata).Aquac. 193: 213–225.CrossRefGoogle Scholar
  8. Jin, H., L. Domier, X. Shen, and F. Kolb, 2000. Combined AFLP and RFLP mapping in two hexaploid oat recombinant inbred populations.Genome 43: 94–101.CrossRefGoogle Scholar
  9. Knorr, C., H. H. Cheng, and J. B. Dodgson, 2001. DNA cloning and sequence analysis of chicken AFLP.Animal Genetics 32: 156–159.CrossRefGoogle Scholar
  10. Kusumo, H. T., L. D. Druchl, 2000. Genetic structure variability of kelpAlaria marginata over space and time.J. Phycol. 36: 39–40.CrossRefGoogle Scholar
  11. Liu, Z., A. Nichols, P. Li, and R. A. Dunham, 1998. Inheritance and usefulness of AFLP markers in channel catfish (Ictalurus punctatus), blue catfish (I. Frucatus), and their F1, F2, and backcross hybrids.Mol. Gen. Genet. 258: 260–268.CrossRefGoogle Scholar
  12. Moore, S. S., V. Whan, G. P. Davis, K. Byrne, D. J. S. Hetzel and N. Preston, 1999. The development and application of genetic markers for the Kuruma prawnPenaeus japonicus.Aquac. 173: 19–32.CrossRefGoogle Scholar
  13. Negi, M. S., M. Devic, M. Delseny, and M. Lakshmikumaran, 2000. Identification of AFLP fragments linked to seed coat colour inBrassica juncea and conversion to a SCAR marker for rapid selection.Theor. Appl. Genet. 101: 146–152.CrossRefGoogle Scholar
  14. Saliba-Colombani, V., M. Causse, L. Gervais, and J. Philouze, 2000. Efficiency of RFLP, RAPD, and AFLP markers for the constructions of an intraspecific map of the tomato genome.Genome 43: 29–40.CrossRefGoogle Scholar
  15. Sambrook, J., E. F. Fritsch and T. Maniatis, 1989. Molecular Cloning. A Laboratory Manual. Cold Springs Harbor Laboratory Press.Google Scholar
  16. Terauchi, R., and G. Kahl, 1999. Mapping of the Sioscorea tokoro genome: AFLP markers linked to sex.Genome 45: 752–762.CrossRefGoogle Scholar
  17. Vos, P., R. Hodgers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper and M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting.Nucl. Acids Res. 23: 4407–4414.CrossRefGoogle Scholar
  18. Wilson, K., Y. Li, V. Whan, S. Lehnert, K. Byrne, S. Moore, S. Pongsomboon, A. Tassanakajon, G. Rosenberg, E. Ballment, Z. Fayazi, J. Swan, M. Kenway, and J. Benzie, 2002. Genetic mapping of the black tiger shrimpPenaeus monodon with amplified fragment length polymorphism.Aquac. 204: 297–309.CrossRefGoogle Scholar
  19. Zhang, Q. W., P. Liu, W. J. Wang, J. Kong, and Q. Y. Wang, 2002. A preliminary study on genetic selection for disease resistant strain inFenneropenaeus chinensis culture.Marine Fisheries Research 23(2): 53–57. (in Chinese)Google Scholar

Copyright information

© Science Press 2005

Authors and Affiliations

  1. 1.Key Laboratory for Sustainable Utilization of Marine Fisheries ResourcesYellow Sea Fisheries Research InstituteQingdaoChina
  2. 2.College of Marine Life ScienceOcean University of ChinaQingdaoChina
  3. 3.Food Laboratory of qingdao Entry-Exit Inspection and Quarantine BureauQingdaoChina

Personalised recommendations