Advertisement

Computation of synthetic seismograms for plane layered earth models including absorption and dispersion phenomena

  • K. N. S. Yadav
  • Avadh Ram
Article

Abstract

A computer program package has been written in FORTRAN-IV language and tested successfully on an ICL 1904S computer. This program enables one to compute synthetic seismograms for layered earth models. The provision for studying the effect of absorption and dispersion of seismic waves has been made with Subroutines. The present program utilizes eight Subroutines and requires about 35 K core memory. A set of examples are illustrated for absorption and dispersion models. An exponential decay of amplitude has been used for the absorption model. This method is based on the plane wave propagation in a flat-layered earth system. Normal incident P-waves are used to eliminate the effect of other phases. Change in shape of reflected waves is observed in absorption model due to damping of energy of higher frequencies. Lack of resolution is found between closely spaced reflections at higher frequencies. The effect of dispersion on seismic waves decreases the time of primary reflections as well as amplitudes of the seismic waves.

Keywords

Synthetic seismograms computer programs absorption dispersion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biot M A 1962aJ. Appl. Phys. 33 1482CrossRefGoogle Scholar
  2. Biot M A 1962bJ. Accoust. Soc. Am. 34 1256Google Scholar
  3. Bouchon M 1979J. Geophys. Res. 84 3609CrossRefGoogle Scholar
  4. Bouchon M and Aki K 1977Bull. Seism. Soc. Am. 67 259Google Scholar
  5. Claerbout J F 1968Geophysics 33 264CrossRefGoogle Scholar
  6. Burridge R and Vargas C A 1979Geophys. J. R. Astron. Soc. 58 61Google Scholar
  7. Deresiewicz H 1974Bull. Seismol. Soc. Am. 64 1901Google Scholar
  8. Deresiewicz H and Levy A 1967Bull. Seismol. Soc. Am. 57 381Google Scholar
  9. Deresiewicz H and Rice J T 1962Bull. Seismol. Soc. Am. 52 595Google Scholar
  10. Deresiewicz H and Rice J T 1964Bull. Seismol. Soc. Am. 54 409Google Scholar
  11. Fuchs K 1968J. Phys. Earth 16 27Google Scholar
  12. Fuchs K and Muller G 1971Geophys. J. R. Astron. Soc. 28 417Google Scholar
  13. Futterman W I 1962J. Geophys. Res. 69 5279CrossRefGoogle Scholar
  14. Ganley D C 1981Geophysics 46 1100CrossRefGoogle Scholar
  15. Kennet B L N 1980Geophys. J. R. Astron. Soc. 61 1Google Scholar
  16. Kennet B L N and Illingworth M R 1981Geophys. J. R. Astron. Soc. 66 633Google Scholar
  17. Kennet B L N and Kerry N J 1979Geophys. J. R. Astron. Soc. 57 557Google Scholar
  18. Khattri K, Gaur V K, Mittal R and Tandon A K 1978Geoexploration 16 185CrossRefGoogle Scholar
  19. Pinnery R A 1965J. Geophys. Res. 70 5107CrossRefGoogle Scholar
  20. Robinson E A 1968Geophysics 33 521CrossRefGoogle Scholar
  21. Robinson E A and Trietal S 1977Geophys. Prosp. 25 434CrossRefGoogle Scholar
  22. Trietal S and Robinson E A 1966Geophysics 31 17CrossRefGoogle Scholar
  23. Trorey A W 1962Geophysics 27 766CrossRefGoogle Scholar
  24. Wuenschel P C 1960Geophysics 25 106CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1986

Authors and Affiliations

  • K. N. S. Yadav
    • 1
  • Avadh Ram
    • 1
  1. 1.Department of GeophysicsBanaras Hindu UniversityVaranasiIndia

Personalised recommendations