Advertisement

Journal of Zhejiang University Science B

, Volume 6, Issue 4, pp 254–258 | Cite as

GM1 stabilizes expression of NMDA receptor subunit 1 in the ischemic hemisphere of MCAo/reperfusion rat

  • Liu Jian-ren
  • Ding Mei-ping
  • Wei Er-qing
  • Luo Jian-hong
  • Song Ying
  • Huang Jian-zheng
  • Ge Qiu-fu
  • Hu Hua
  • Zhu Li-jun
Article
  • 36 Downloads

Abstract

Objective: To determine the protective effect of monosialoganglionside (GM1) and evaluate the influence of GMI on expression of N-methyl-D-aspartate receptor subunit 1 (NMDAR1) in Sprague-Dawley (SD) rats with focal cerebral ischemia-reperfusion (I/R). Methods: Left middle cerebral artery (MCA) was occluded by an intraluminal suture for 1 h and the brain was reperfused for 72 h in SD rats when infarct volume was measured. GM1 (10 mg/kg) was givenip (intraperitoneally) at 5 min (group A), 1 h (group B) and 2h (group C) after MCA occlusion (MCAo). Expression of NMDAR1 was detected by Western blot at various time after reperfusion (4 h, 6 h, 24 h, 48 h and 72 h) in ischemic hemispheres of the rats with or without GM1 administered. Results: (1) Adjusted relative infarct volumes of groups A and B were significantly smaller than that of group C and the control group (P<0.01, andP<0.05, respectively). (2) Expression level of NMDAR1 was temporally high at 6 h after reperfusion, and dipped below the normal level at 72 h after reperfusion. GM1 at 5 min after MCAo significantly suppressed the expression of NMDAR1 at 6 h after reperfusion (P<0.05 vs the control). At 72 h after reperfusion, the NMDAR1 expression level of rats treated with GM1 administered (at 5 min or 2 h after MCAo) was significantly higher than that of the control (P<0.05). Conclusion: GM1 can time-dependently reduce infarct volume in rats with focal cerebral I/R partly through stabilizing the expression of NMDAR1.

Key words

G(M1) ganglioside Middle cerebral artery occlusion Reperfusion N-methyl-D-aspartate receptors Rats 

Document code

CLC number

R741 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandoli, C., Sanna, A., De Bernardi, M.A., Follesa, P., Brooker, G., Mocchetti, I., 1998. Brain-derived neurotrophic factor and basic fibroblast growth factor down-regulate NMDA receptor function in cerebellar granule cells.J Neurosci,18(19):7953–7961.PubMedGoogle Scholar
  2. Choi, D.W., Rothman, S.M., 1990. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death.Annu Rev Neurosci,13:171–182.PubMedCrossRefGoogle Scholar
  3. Collingridge, G.L., Singer, W., 1990. Excitatory amino acid receptors and synaptic plasticity.Trends Pharmacol Sci,11(7):290–296.PubMedCrossRefGoogle Scholar
  4. de Erausquin, G.A., Manev, H., Guidotti, A., Costa, E., Brooker, G., 1990. Gangliosides normalize distorted single-cell intracellular free Ca2+ dynamics after toxic doses of glutamate in cerebellar granule cells.Proc Natl Acad Sci USA,87(20):8017–8021.PubMedCrossRefGoogle Scholar
  5. Duchemin, A.M., Ren, Q., Mo, L., Neff, N.H., Hadjiconstantinou, M., 2002. GM1 ganglioside induces phosphorylation and activation of Trk and Erk in brain.J Neurochem,81(4):696–707.PubMedCrossRefGoogle Scholar
  6. Friedman, L.K., Ginsberg, M.D., Belayev, L., Busto, R., Alonso, O.F., Lin, B., Globus, M.Y., 2001. Intraischemic but not postischemic hypothermia prevents non-selective hippocampal downregulation of AMPA and NMDA receptor gene expression after global ischemia.Brain Res Mol Brain Res,86(1–2):34–47.PubMedCrossRefGoogle Scholar
  7. Garofalo, L., Cuello, A.C., 1994. Nerve growth factor and the monosialoganglioside GM1: analogous and different in vivo effects on biochemical, morphological, and behavioral parameters of adult cortically lesioned rats.Exp Neurol,125(2):195–217.PubMedCrossRefGoogle Scholar
  8. Kang, T.C., Hwang, I.K., Park, S.K., An, S.J., Yoon, D.K., Moon, S.M., Lee, Y.B., Sohn, H.S., Cho, S.S., Won, M.H., 2001. Chronological changes ofN-methyl-D-aspartate receptors and excitatory amino acid carrier 1 immunore-activities in CA1 area and subiculum after transient forebrain ischemia.J Neurocytol,30(12):945–955.PubMedCrossRefGoogle Scholar
  9. Kharlamov, A., Guidotti, A., Costa, E., Hayes, R., Armstrong, D., 1993. Semisynthetic sphingolipids prevent protein kinase C translocation and neuronal damage in the perifocal area following a photochemically induced thrombotic brain cortical lesion.J Neurosci,13(6):2483–2494.PubMedGoogle Scholar
  10. Longa, E.Z., Weinstein, P.R., Carlson, S., Cummins, R., 1989. Reversible middle cerebral artery occlusion without craniectomy in rats.Stroke,20(1):84–91.PubMedGoogle Scholar
  11. Luo, J., Bosy, T.Z., Wang, Y., Yasuda, R.P., Wolfe, B.B., 1996. Onlogeny of NMDAR1 subunit protein expression in five regions of rat brain.Brain Res Dev Brain Res,92(1):10–17.PubMedCrossRefGoogle Scholar
  12. Luo, J., Wang, Y., Yasuda, R.P., Dunah, A.W., Wolfe, B.B., 1997. The majority of n-methyl-d-aspartate receptor Complexes in adult rat cerebral cortex contain at least three different subunits (NMDAR1/NMDAR2A/NMDAR2B).Mol Pharmacol,51(1):79–86.PubMedGoogle Scholar
  13. Manev, H., Favaron, M., Vicini, S., Guidotti, A., Costa, E., 1990. Glutamate-induced neuronal death in primary cultures of cerebellar granule cells: protection by synthetic derivatives of endogenous sphingolipids.J Pharmacol Exp Ther,252(1):419–427.PubMedGoogle Scholar
  14. Michaels, R.L., Rothman, S.M., 1990. Glutamate neurotoxicity in vitro: antagonist pharmacology and intracellular calcium concentrations.J Neurosci,10(1):283–292.PubMedGoogle Scholar
  15. Monaghan, D.T., Bridges, R.J., Cotman, C.W., 1989. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system.Annu Rev Pharmacol Toxicol,29:365–402.PubMedCrossRefGoogle Scholar
  16. Rossi, D.J., Oshima, T., Attwell, D., 2000. Glutamate release in severe brain ischemia is mainly by reversed uptake.Nature,403(6767):316–321.PubMedCrossRefGoogle Scholar
  17. Simon, R.P., Chen, J., Graham, S.H., 1993. GM1 ganglioside treatment of focal ischemia: a dose-response and microdialysis study.J Pharmacol Exp Ther,265(1):24–29.PubMedGoogle Scholar
  18. Wahlestedt, C., Golanov, E., Yamamoto, S., Yee, F., Ericson, H., Yoo, H., Inturrisi, C.E., Reis, D.J., 1993. Antisense oligodeoxynucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infarctions.Nature,363(6426):260–263.PubMedCrossRefGoogle Scholar
  19. Won, M.H., Kang, T., Park, S., Jeon, G., Kim, Y., Seo, J.H., Choi, E., Chung, M., Cho, S.S., 2001. The alterations ofN-Methyl-D-aspartate receptor expressions and oxidative DNA damage in the CA1 area at the early time after ischemia-reperfusion insult.Neurosci Lett,301(2): 139–142.PubMedCrossRefGoogle Scholar
  20. Zang, L.H., Wei, E.Q., 2003. Neuroprotective effect of ONO-1078, a leukotriene receptor antagonist, on transient global cerebral ischemia in rats.Acta Pharmacol Sin,24(12):1241–1247.Google Scholar

Copyright information

© Zhejiang University Press 2005

Authors and Affiliations

  • Liu Jian-ren
    • 1
  • Ding Mei-ping
    • 1
  • Wei Er-qing
    • 3
  • Luo Jian-hong
    • 4
  • Song Ying
    • 3
  • Huang Jian-zheng
    • 1
  • Ge Qiu-fu
    • 3
  • Hu Hua
    • 2
  • Zhu Li-jun
    • 4
  1. 1.Department of Neurology, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  2. 2.Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  3. 3.Department of Pharmacology, School of MedicineZhejiang UniversityHangzhouChina
  4. 4.Department of Neurobiology, School of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations