Fourier’s heat conduction equation: History, influence, and connections

  • T. N. Narasimhan


The equation describing the conduction of heat in solids has, over the past two centuries, proved to be a powerful tool for analyzing the dynamic motion of heat as well as for solving an enormous array of diffusion-type problems in physical sciences, biological sciences, earth sciences, and social sciences. This equation was formulated at the beginning of the nineteenth century by one of the most gifted scholars of modern science, Joseph Fourier of France. A study of the historical context in which Fourier made his remarkable contribution and the subsequent impact his work has had on the development of modern science is as fascinating as it is educational. This paper is an attempt to present a picture of how certain ideas initially led to Fourier’s development of the heat equation and how, subsequently, Fourier’s work directly influenced and inspired others to use the heat diffusion model to describe other dynamic physical systems. Conversely, others concerned with the study of random processes found that the equations governing such random processes reduced, in the limit, to Fourier’s equation of heat diffusion. In the process of developing the flow of ideas, the paper also presents, to the extent possible, an account of the history and personalities involved.


Fourier diffusion history 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, H. L., and E. Fermi, Production and absorption of slow neutrons by carbon,Rep. 136, U.S. At. Energy Comm., Washington, D.C., 1940.Google Scholar
  2. Archibald, T., Tension and potential: From Ohm to Kirchhoff,Centaurus, 31, 141–163, 1988.CrossRefGoogle Scholar
  3. Bachelier, L., Théorie de la spéculation, inAnn. de l’Ecole Normale Supérieure, vol. 3, Gauthier-Villars, Paris, 1900. (English translation, inThe Random Character of Stock Market Prices, edited by P. H. Cootner, pp. 17–78, MIT Press, Cambridge, Mass., 1964).Google Scholar
  4. Barr, L. W., The origin of quantitative diffusion measurements in solids: A centenary view, inDefects and Diffusion Forum, vols. 143–147, pp. 3–10. Trans Tech, Zurich Switzerland, 1997.Google Scholar
  5. Berthollet, C. L.,Essai de Statique Chimique, F. Didot, Paris, 1803.Google Scholar
  6. Biot, J. B., Mémoire sur la chaleur, Bibl. Br.Sci. Arts,27, 310–329, 1804.Google Scholar
  7. Buckingham, E., Contributions to our knowledge of the aeration of soils,Bull. 25, 50 pp., U.S. Dep. of Agric, Washington, D.C., 1904.Google Scholar
  8. Buckingham, E., Studies on the movement of soil moisture,Bull. 38, Bureau of Soils, U.S. Dep. of Agric, 61 pp., Washington, D.C., 1907.Google Scholar
  9. Bullard, E. C., A. E. Maxwell, and R. Revelle, Heat flow through the deep sea floor,Adv. Geophys. 3, 153–181, 1956.Google Scholar
  10. Carslaw, H. S.,Introduction to Mathematical Theory of Conduction of Heat in Solids, 2nd ed., Macmillan, New York, 1945.Google Scholar
  11. Darcy, H., Détermination des lois d’écoulement de l’eau à travers le sable, inLes Fontaines Publiques de la Ville de Dijon, pp. 590–594, Victor Dalmont, Paris, 1856.Google Scholar
  12. Dupuit, J. J.,Etudes Théoriques et Pratiques sur le Mouvement des Eaux Dans les Canaux Découverts et à Travers les Terrains Perméables, 2nd ed., Dunot, Paris, 1863.Google Scholar
  13. Dutrochet, R. J. H., New observations on endosmosis and exosmosis, and on the cause of this dual phenomenon,Ann. Chim. Phys. 35, 393–400, 1827.Google Scholar
  14. Edgeworth, F. Y., The law of error,Philos. Mag., Fifth Ser. 16 300–309, 1883.Google Scholar
  15. Einstein, A., Über die von der molekularkinetischen Flüssigkeiten suspendierten Teilchen,Ann. Phys., 17, 549–560, 1905. (English translation, inInvestigations on the Theory of Brownian Movement by Albert Einstein, edited with notes by R. Fürth, pp. 1–35, Methuen, London, 1926).CrossRefGoogle Scholar
  16. Fermi, E., Sul moto dei neutroni nelle sostanze idrogenate,Ric. Sci., 7(2), 13–52, 1936.Google Scholar
  17. Fick, A., Ueber diffusion,Poggendorffs Ann. Phys. Chem., 59–86, 1855a.Google Scholar
  18. Fick, A., On liquid diffusion,Philos. Mag. J. Sci., 10, 31–39, 1855b.Google Scholar
  19. Forchheimer, D. H., Über die Ergiebigkeit von Brunnen-Anlagen und Sickerschlitzen,Z. Architekt. Ing.-Ver., Hannover, 32(7), 539–564, 1886.Google Scholar
  20. Fourier, J. B. J.,Théorie Analytique de la Chaleur, F. Didot, Paris, 1822.Google Scholar
  21. Gardner, W., O. W. Israelsen, N. E. Edlefsen, and H. Clyde, The capillary potential function and its relation to irrigation practice (abstract),Phys. Rev. Ser. II, 20, 199, 1922.Google Scholar
  22. Gillispie, C. C. (Ed. in Chief),Dictionary of Scientific Biography, Scribner, New York, 1981.Google Scholar
  23. Graham, T. H., On the law of diffusion of gases,Philos. Mag. J. Sci., 2, 175–191, 269–276, 351–358, 1833.Google Scholar
  24. Graham, T. H., On the diffusion of liquids,Philos. Trans. R. Soc. London, Part 1, 1–46, 1850.Google Scholar
  25. Grattan-Guinness, I., and J. R. Ravetz,Joseph Fourier, 1768–1830, pp. 516, MIT Press, Cambridge, Mass., 1972.Google Scholar
  26. Green, G., An essay on the application of mathematical analysis to the theories of Electricity and Magnetism, Published by subscription at Nottingham, 1828.Google Scholar
  27. Guerlac, H.,English Translation and Notes of Memoire on Heat of Lavoisier and Laplace, Neale Watson Academic, New York, 1982.Google Scholar
  28. Hagen, G., The flow of water in narrow cylindrical tubes,Poggendorffs Ann. Phys. Chem., 46, 423, 1839.CrossRefGoogle Scholar
  29. Hallam, A.,Great Geological Controversies, Oxford Univ. Press, 1983.Google Scholar
  30. Herivel, J.,Joseph Fourier, The Man and the Physicist, Clarendon, Oxford, England, 1975.Google Scholar
  31. Kirchhoff, G. R., Ueber eine Ableitung der Ohm’schen Gesetze, nach welche sich an die Theorie der Elecktrostatic anschliesst,Ann. Phys.,78, 1849.Google Scholar
  32. Lambert, J. H.,Pyrométrie, Haude und Spener, Berlin, 1779.Google Scholar
  33. Langevin, P., Sur la théorie du movement Brownien,C. R. Acad. Sci. Paris, 146, 530–533, 1908.Google Scholar
  34. Laplace, P. S., Memoire sur la théorie de l’annaeau de Saturne,Mem. Acad. R. Sci. Paris, 1787/1789, 249–267, 1789.Google Scholar
  35. Lavoisier, M., and P. S. Laplace, Mémoire sur la Chaleur, paper presented at Académie Royale des Sciences, Paris, June 28, 1783. (English translation, H., Guerlac, Neale Watson Academic, New York, 1982).Google Scholar
  36. Maxwell, J. C., On the dynamic theory of gases,Philos. Trans. R. Soc. London, 157, 49–88, 1867.CrossRefGoogle Scholar
  37. Maxwell, J.C., Scientific worthies, I., Faraday,Nature, 8, 397–399, 1873.CrossRefGoogle Scholar
  38. Maxwell, J. C.,Treatise on Electricity and Magnetism, vol. 1, 2nd ed., Oxford at the Clarendon Press, 1881.Google Scholar
  39. Maxwell, J. C.,An Elementary Treatise on Electricity, 2nd ed., Oxford at the Clarendon Press, 1888.Google Scholar
  40. McKenzie, D. P., Some remarks on heat flow and gravity anomalies,J. Geophys. Res., 72(24), 6261–6273, 1967.Google Scholar
  41. Middleton, W. E. K.,A History of the Thermometer and Its Use in Meterology, Johns Hopkins Press, Baltimore, Md., 1966.Google Scholar
  42. Nernst, W. H., Zur kinetik der in Losung befindlichen Körper,Z. Phys. Chem., 2, 613–622, 634–637, 1888.Google Scholar
  43. Nollet, J. A., Investigations on the causes for the ebullition of liquids, inHistoire de l’Académie Royale des Sciences, Paris, pp. 57–104, 1752.Google Scholar
  44. Ohm, G. S.,Die galvanische Kette, mathematisch Bearbeitet, T. H. Riemann, Berlin, 1827. (English translation, W. Francis,The Galvanic Circuit Investigated Mathematically, 269 pp. Van Nostrand, New York, 1891).Google Scholar
  45. Pearson, K., The problem of the random walk,Nature, 72, 294, 342, 1905.CrossRefGoogle Scholar
  46. Pfeffer, W.,Osmotische Untersuchungen, Studien zur Zellmechanik, W. Engelmann, Leipzig, Germany, 1877. (English translation, G. R. Kepner and E. J. Stadelmann, Van Nostrand Reinhold, New York, 1940).Google Scholar
  47. Poiseuille, J. L. M., Recherches experimentais sur le mouvement des liquides dans les tubes de très petits diamètres,Mem. Présentés Divers Savants Acad. R. Sci. Inst. France, 9, 1846. (English translation, W. H. Herschel,Rheol. Mem. 1(1), 1940).Google Scholar
  48. Rayleigh, Lord (J. W. Strutt), On the resultant of a large number of vibrations of the same pitch and of arbitrary phase,Philos. Mag., 10, 73–78, 1880.Google Scholar
  49. Rayleigh, Lord (J. W. Strutt),The Theory of Sound, vol. 1, 2nd ed., Macmillan London, 1894.Google Scholar
  50. Richards, L. A., Capillary conduction of liquids through porous mediums,Physics, 1, 318–333, 1931.CrossRefGoogle Scholar
  51. Roberts-Austen, W. C., On the diffusion of metals,Philos. Trans. R. Soc. London, 187, 383–413, 1896.CrossRefGoogle Scholar
  52. Samuelson, P. A., Rational theory of Warrant pricing,Ind. Manage. Rev., 6(spring), 13–31, 1965.Google Scholar
  53. Stigler, S. M., Francis Ysidro Edgeworth, statistician,Proc. R. Stat. Soc, A, part 3, 287–322, 1978.Google Scholar
  54. Taylor, G., Dispersion of soluble matter in solvent flowing slowly through a tube,Proc. R. Soc. London, Ser, A., 219, 186–203, 1953.CrossRefGoogle Scholar
  55. Terzaghi, K., Die Theorie der hydrodynamischen Spannungserscheinungen und ihr erdbautechnisches Anwendungsgebiet, inProceedings of First International Conference on Applied Mechanics, edited by C.B., Bienzeno and J.M. Burgers, pp. 288–294, J. Waltman Jr., Delft, Netherlands, 1925.Google Scholar
  56. Thomson, W., On the uniform motion of heat in homogeneous solid bodies and its connection with the mathematical theory of electricity,Cambridge Math. J., 3, 71–84, 1842.Google Scholar
  57. Van’t Hoff, J. H., Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und Gasen,Z. Phys. Chem., 1, 481–493, 1887.Google Scholar

Copyright information

© Indian Academy of Sciences 1999

Authors and Affiliations

  • T. N. Narasimhan
    • 1
  1. 1.Department of Materials Science and Mineral Engineering, Department of Environmental Science, Policy, and Management, Lawrence Berkeley National LaboratoryUniversity of CaliforniaBerkeley

Personalised recommendations