Estuaries and Coasts

, Volume 30, Issue 4, pp 671–678 | Cite as

Infrared imagery of a turbulent intrusion in a stratified environment

  • G. O. Marmorino
  • G. B. Smith


A time sequence of airborne infrared imagery provides a unique view of phenomena associated with a turbulent tidal intrusion into a stratified bay. During flood tide, cooler water from the Strait of Juan de Fuca is observed to penetrate Sequim Bay (Washington, U.S.V.) as a turbulent jet. After separating from the shoreline, the jet collapses into the stratified middle part of the bay, forming a mushroom-shaped head consisting of a semicircular plunge front and areas of recirculating flow. As the plunge front advances into the estuary, a set of nonlinear internal waves emerges and propagates toward the relatively stagnant southern part of the bay, where they are a potential source of vertical mixing. This range of phenomena is expected based on laboratory studies, but has not been seen previously in a natural setting.


Internal Wave Flood Tide Nonlinear Internal Wave Ambient Stratification Infrared Imagery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Boegman, L., J. Imberger, G. N. Ivey, andJ. P. Antenucci. 2003. High-frequency internal waves in large stratified lakes.Limnology and Oceanography 48:895–919.CrossRefGoogle Scholar
  2. Britter, R. E. andJ. E. Simpson. 1981. A note on the structure of the head of an intrusive gravity current.Journal of Fluid Mechanics 112:459–466.CrossRefGoogle Scholar
  3. Farrar, J. T., C. Zappa, R. Weller, and A. T. Jessup. 2006. Sea surface temperature signatures of oceanic internal waves in low winds. Eos Transactions AGU, 87(52), Fall Meeting Supplement, Abstract OS43D-07. San Francisco, California.Google Scholar
  4. Flynn, M. R. andB. R. Sutherland. 2004. Intrusive gravity currents and internal gravity wave generation in stratified fluid.Journal of Fluid Mechanics 514:355–383.CrossRefGoogle Scholar
  5. Largier, J. 1992. Tidal intrusion fronts.Estuaries 15:26–39.CrossRefGoogle Scholar
  6. Maderich, V. S., G. J. F.van Heijst, andA. Brandt. 2001. Laboratory experiments on intrusive flows and internal waves in a pycnocline.Journal of Fluid Mechanics 432:285–311.Google Scholar
  7. Marmorino, G. O., C. L. Trump, andD. B. Trizna. 1999. Preliminary observation of a tidal intrusion front inside the mouth of the Chesapeake Bay.Estuaries 22:105–112.CrossRefGoogle Scholar
  8. Maxworthy, T. 1980. On the formation of nonlinear internal waves from the gravitational collapse of mixed regions in two and three dimensions.Journal of Fluid Mechanics 96:47–64.CrossRefGoogle Scholar
  9. Rottman, J. W. andJ. E. Simpson. 1989. The formation of internal bores in the atmosphere: A laboratory model.Quarterly Journal of the Royal Meteorological Society 115:941–963.CrossRefGoogle Scholar
  10. Simpson, J. H. andR. A. Nunes. 1981. The tidal intrusion front: An estuarine convergence zone.Estuarine, Coastal and Shelf Science 13:257–266.CrossRefGoogle Scholar
  11. Sutherland, B. R., M. R. Flynn, andK. Dohan. 2004b. Internal wave excitation from a collapsing mixed region.Deep-Sea Research II 51:2889–2904.CrossRefGoogle Scholar
  12. Sutherland, B. R., P. J. Kyba, andM. R. Flynn. 2004a. Intrusive gravity currents in two-layer fluids.Journal of Fluid Mechanics 514: 327–353.CrossRefGoogle Scholar
  13. Thorpe, S. A., A. J. Hall, andS. Hunt. 1983. Bouncing internal bores of Ardmucknish Bay, Scotland.Nature 306:167–169.CrossRefGoogle Scholar
  14. Uncles, R. J., J. A. Stephens, andR. J. Murphy. 1997. Aircraft and sea-truth observations of a small-scale estuarine intrusion front.Journal of Marine Systems 12:199–219.CrossRefGoogle Scholar
  15. Van Heijst, G. J. F. andJ. B. Flor. 1989. Laboratory experiments on dipole structures in a stratified fluid, p. 591–608.InJ. C. J.Nihoul andB. M.Jamart (eds.), Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence: Proceedings of the 20th International Liège Colloquium on Ocean Hydrodynamics. Elsevier Oceanography Series, 50. Elsevier Science Publishing, Amsterdam, The Netherlands.Google Scholar
  16. Walsh, E. J., R. Pinkel, D. E. Hagan, R. A. Weller, C. W. Fairall, D. P. Rogers, S. P. Burns, andM. Baumgartner. 1998. Coupling of internal waves on the main thermocline to the diurnal surface layer and sea surface temperature during the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment.Journal of Geophysical Research 103:12613–12628.CrossRefGoogle Scholar
  17. Zappa, C. J., P. A. Raymond, E. A. Terray, andW. R. McGillis. 2003. Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary.Estuaries 26: 1401–1415.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 2007

Authors and Affiliations

  1. 1.Remote Sensing DivisionNaval Research LaboratoryWashington, D.C.

Personalised recommendations