Electronic structure and conformational study of thiobiurets

  • V. C. Jyothi Bhasu
  • D. N. Sathyanarayana
  • C. C. Patel
Physical and Theoretical


Quantum mechanical calculations at all valence complete neglect of differential overlap (CNDO/2) and self-consistent charge extend Huckel (SCC-EH) and the Pi electron Pariser-Parr-Pople with limited configuration interaction (PPP-LCI) levels of approximation have been accomplished for monothiobiuret and dithiobiuret. From the calculated results, a discussion of the electronic structure, photoelectron and electronic spectra and the conformational stability are given. The electronic and1H nmr spectra are also reported. A trans-cis-CONHCS-structure is found to be the stable conformation for monothiobiuret consistent with other evidences.


Monothiobiuret dithiobiuret CNDO/2 SCC-EH PPP-LCI electronic structure electronic spectra conformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitken G B, Duncan J L and McQuillan, G P 1971J. Chem. Soc. (A) p. 2695Google Scholar
  2. Ali M A and Livingstone S E 1974Coord. Chem. Rev. 13 101CrossRefGoogle Scholar
  3. Barrett J and Deghaidy F S 1975Spectrochim. Acta A31 707Google Scholar
  4. Bonamico M, Dessy G, Fares V and Scaramuzza L 1971J. Chem. Soc. (A) p. 3195Google Scholar
  5. Boyd D B 1972Theor. Chim. Acta 23 383CrossRefGoogle Scholar
  6. Carroll D G, Armstrong A T and McGlynn S P 1966J. Chem. Phys. 44 1865CrossRefGoogle Scholar
  7. Cox M and Darken J 1971Coord. Chem. Rev. 1 29CrossRefGoogle Scholar
  8. Flurry Jr R L 1968Molecular orbital theories of bonding in organic molecules 1968 (New York: Marcel Dekker)Google Scholar
  9. Geetharani K and Sathyanarayana D N 1976Spectrochim. Acta A32 p. 227Google Scholar
  10. Hoffmann R 1963J. Chem. Phys. 39 1397CrossRefGoogle Scholar
  11. Hughes E W, Yakel E L and Freeman H C 1961Acta Crystallogr. 14 345CrossRefGoogle Scholar
  12. Kaya K and Nagakura S 1967Theor. Chim. Acta 7 117CrossRefGoogle Scholar
  13. Koopmans T 1934Physica 1 104CrossRefGoogle Scholar
  14. Kimura K, Katsumata S, Ishiguro T, Hirakawa A Y and Tsuboi M 1976Bull. Chem. Soc. Jpn. 49 937CrossRefGoogle Scholar
  15. Kurzer F 1955Org. Synth. 35 69Google Scholar
  16. Kurzer F 1956Chem. Rev. 56 95CrossRefGoogle Scholar
  17. Kurzer F and Taylor S A 1962J. Chem. Soc. p. 4191Google Scholar
  18. Marsden R J B and Sutton L E 1936J. Chem. Soc. p. 1383Google Scholar
  19. Mines G W and Thompson H W 1975Spectrochim. Acta A31 137Google Scholar
  20. Pariser R and Parr R G 1953J. Chem. Phys. 21 568, 767CrossRefGoogle Scholar
  21. Pople J A 1953Trans. Faraday Soc. 49 1375CrossRefGoogle Scholar
  22. Pople J A and Beveridge D L 1970Approximate molecular orbital theory (New York: McGraw-Hill)Google Scholar
  23. Ray A and Sathyanarayana D N 1975Spectrochim. Acta A31 899Google Scholar
  24. Spofford in W A A and Amma E L 1972J. Cryst. Mol. Struct. 2 151CrossRefGoogle Scholar
  25. Sweigart D A and Turner D W 1972J. Am. Chem. Soc. 94 5592CrossRefGoogle Scholar
  26. Usatenko Yu I and Sukhoruchkina A A S 1963Zh. Anal. Khim. 18 1295Google Scholar
  27. Walter W 1960Ann. 49 633Google Scholar
  28. Wennerstrom H, Forsen S and Roos B 1972J. Phys. Chem. 76 2430CrossRefGoogle Scholar
  29. Wolfsberg M and Helmholtz L 1952J. Chem. Phys. 20 837CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1979

Authors and Affiliations

  • V. C. Jyothi Bhasu
    • 1
  • D. N. Sathyanarayana
    • 1
  • C. C. Patel
    • 1
  1. 1.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangalore

Personalised recommendations