Noble gas components in planetary atmospheres and interiors in relation to solar wind and meteorites

  • K. Marti
  • K. J. Mathew


We discuss observed xenon isotopic signatures in solar system reservoirs and possible relationships. The predominant trapped xenon component in ordinary chondrites (OC) is OC-Xe and its isotopic signature differs from Xe in ureilites, in carbonaceous chondrites, in the atmospheres of Earth and Mars, and in the solar wind. Additional minor Xe components were identified in type 3 chondrites and in the metal phase of chondrites. The OC-Xe and ureilite signatures are both consistent with varying mixtures of HL-Xe and slightly mass fractionated solar-type Xe. Xenon in the Martian atmosphere is found to be strongly mass fractionated by 37.7‰ per amu, relative to solar Xe, favoring the heavy isotopes. Xenon in SNC’s from the Martian mantle show admixture of solar-type Xe, which belongs to an elementally strongly fractionated component. The origin of the isotopic signatures of Ne and Xe in the terrestrial atmosphere are discussed in the light of evidence that the Xe isotopic fractionations in the Martian and terrestrial atmospheres are consistent. However, in the terrestrial atmospheric Xe component excesses are observed for132Xe and also for129,131Xe, relative to fractionated solar Xe. The suggested chemically fractionated fission Xe component (CFF-Xe) seems to closely match the above excesses. We discuss models of origin for planetary volatiles and possible processes driving their evolution to present day compositions.


Noble gases isotopic composition planetary atmospheres xenon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alaerts L, Lewis R S and Anders E 1979 Isotopic anomalies of noble gases in meteorites and their origins. IV. C3 (Ornans) carbonaceous chondrites;Geochim. Cosmochim. Acta 43 1421–1432CrossRefGoogle Scholar
  2. Allègre C J, Sarda P, and Staudacher T 1993 Speculations about the cosmic origin of He and Ne in the interior of the Earth;Earth Planet. Sci. Lett. 117 229–233CrossRefGoogle Scholar
  3. Allègre C J, Staudacher T, and Sarda P 1986/87 Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth’s mantle;Earth Planet. Sci. Lett. 81 127–150CrossRefGoogle Scholar
  4. Anderson D L 1993 Helium-3 from the mantle: Primordial signal or cosmic dust?;Science 261 170–176CrossRefGoogle Scholar
  5. Bachiller R 1996 Bipolar molecular outflows from young stars and protostars;Ann. Rev. Astron. Astrophys. 34 111–154CrossRefGoogle Scholar
  6. Benz W and Cameron A G W 1990 Terrestrial effects of the giant impact; inOrigin of the Earth (eds) H E Newsom and J H Jones (Oxford Univ. Press) pp. 61–67Google Scholar
  7. Becker R H and Pepin R O 1984 The case for a Martian origin of the shergottites: Nitrogen and noble gases in EETA 79001;Earth Planet. Sci. Lett. 69 225–242CrossRefGoogle Scholar
  8. Bernatowicz T J and Fahey A J 1986 Xe isotopic fractionation in a cathedeless glow discharge;Geochim. Cosmochim. Acta 50 445–452CrossRefGoogle Scholar
  9. Bernatowicz T J and Podosek F A 1986 Adsorption and isotopic fractionation of Xe;Geochim. Cosmochim. Acta 50 1503–1507CrossRefGoogle Scholar
  10. Burnard P, Graham D, and Turner G 1997 Vesicle-specific noble gas analyses of “popping rock”: Implications for primordial noble gases in Earth;Science 276 568–571CrossRefGoogle Scholar
  11. Butler W A, Jeffery P M, Reynolds J H, and Wasserburg G J 1963 Isotopic variations in terrestrial xenon;J. Geophys. Res. 68 3283–3291CrossRefGoogle Scholar
  12. Crabb J and Anders E 1981 Noble gases in E-chondrites;Geochim. Cosmochim. Acta 45 2443–2464CrossRefGoogle Scholar
  13. Eberhardt P, Geiss J, Graf H, Grögler N, Mendia M D, Mörgeli M, Schwaller H, Stettier A, Krähenbühl U and von Gunten H R 1972 Trapped solar wind noble gases in Apollo 12 lunar fines 12001 and Apollo 11 breccia 10046;Proc. Lunar Planet. Sci. Conf. 3rd 1821–1856Google Scholar
  14. Farley K A and Craig H 1994 Atmospheric Argon contamination of ocean island basalt olivine phenocrysts;Geochim. Cosmochim. Acta 58 2509–2517CrossRefGoogle Scholar
  15. Farley K A and Poreda R J 1993 Mantle Neon and atmospheric contamination;Earth Planet. Sci. Lett. 114 325–339CrossRefGoogle Scholar
  16. Feigelson E D, Casanova S, Montmerle T and Guibert J 1993 Rosat X-ray study of the Chamaeleon I dark cloud. I. The stellar population;Astrophys. J. 416 623–646CrossRefGoogle Scholar
  17. Honda M, McDougall I, Patterson D B, Doulgeris A and Clague D A 1991 Possible solar noble-gas component in Hawaiian basalts;Nature 349 149–151CrossRefGoogle Scholar
  18. Heymann D and Mazor E 1968 Noble gases in unequilibrated ordinary chondrites;Geochim. Cosmochim. Acta 32 1–19CrossRefGoogle Scholar
  19. Huss G R 1990 Ubiquitous interstellar diamond and SiC in primitive chondrites: abundances reflect metamorphism;Nature 347 159–162CrossRefGoogle Scholar
  20. Huss G R, Lewis R S and Hemkin S 1996 The “normal planetary” noble gas component in primitive chondrites: Compositions, carrier, and metamorphic history;Geochim. Cosmochim. Acta 60 3311–3340CrossRefGoogle Scholar
  21. Igarashi G 1995 Primitive-xenon in the Earth; inVolatiles in the earth and solar system (ed) K A Farley (American Institute of Physics) pp. 70–80Google Scholar
  22. Ip W H 1984 Magnetic field amplification in the solar nebula through interaction with the T-Tauri wind;Nature 312 625–626CrossRefGoogle Scholar
  23. Ip W H 1995 Cosmic ray acceleration by protostellar winds in the Orion molecular complex;Astron. Astrophys. 300 283–288Google Scholar
  24. Jakosky B M, Pepin R O, Johnson R E and Fox J L 1994 Mars atmospheric loss and isotopic fractionation by solar-windinduced sputtering and photochemical escape;Icarus 111 271–288CrossRefGoogle Scholar
  25. Kim J S and Marti K 1992 Solar-type xenon: Isotopic abundances in Pesyanoe;Proc. Lunar Planet. Sci. Conf. 22 145–151Google Scholar
  26. Kunz J, Staudacher T and Allègre C J 1998 Plutonium-fission xenon found in earth’s mantle;Science 280 877–880CrossRefGoogle Scholar
  27. Lavielle B and Marti K 1992 Trapped xenon in ordinary chondrites;J. Geophys. Res. (Planets) 97 20875–20881CrossRefGoogle Scholar
  28. Levskii L K, Fedorova I V and Yakovleva S Z 1971 Distribution of inert gases in chondrites;Geokhimiya 5 515–522Google Scholar
  29. Lupton J E 1983 Terrestrial inert gases: Isotope tracer studies and clues to primordial components in the mantle;Annu. Rev. Earth Planet. Sci. 11 371–414CrossRefGoogle Scholar
  30. Marti K 1967 Trapped xenon and the classification of chondrites;Earth Planet. Sci. Lett. 2 193–196CrossRefGoogle Scholar
  31. Marti K, Kim J S, Lavielle B, Pellas P and Perron C 1989 Xenon in chondritic metal;Z. Naturforsch. 44a 963–967Google Scholar
  32. Marti K, Kim J S, Thakur A N, McCoy T J and Keil K 1995 Signatures of the Martian Atmosphere in glass of the Zagami meteorite;Science 267 1981–1984CrossRefGoogle Scholar
  33. Marty B and Allè P 1994 Neon and Argon isotopic constraints on Earth-atmosphere evolution; inNoble Gas Geochem. Cosmochem. (ed. Matsuda J.) (Terra Scientific Publishing Company) pp. 191–204Google Scholar
  34. Mathew K J, Kim J S and Marti K 1998 Martian atmospheric and indigenous components of xenon and nitrogen in the Shergotty, Nakhla, and Chassigny group meteorites;Meteorit. Planet. Sci. 33 655–664CrossRefGoogle Scholar
  35. Meshik A, Hohenberg C, Kehm K, Swan P, and Dymkov Yu 1997 Chemically fractionated fission (CFF) Xe in Okelobondo (zone 13 of Oklo): Implications for the origin of terrestrial xenon;Lunar Planet. Sci. 28 943–944Google Scholar
  36. Michel Th and Eugster O 1994 Primitive xenon in diogenites and Plutonium -244-fission xenon ages of a diogenite, a howardite and eucrites;Meteoritics 29 593–606Google Scholar
  37. Moniot R K 1980 Noble-gas-rich separates from ordinary chondrites;Geochim. Cosmochim. Acta 44 253–271CrossRefGoogle Scholar
  38. Murty S V S and Mohapatra R K 1997 Nitrogen and heavy noble gases in ALH84001: Signatures of ancient Martian atmosphere;Geochim. Cosmochim. Acta 61 5417–5428CrossRefGoogle Scholar
  39. Ott U 1988 Noble gases in SNC meteorites: Shergotty, Nakhla, Chassigny;Geochim. Cosmochim. Acta 52 1937–1948CrossRefGoogle Scholar
  40. Ozima M 1975 Ar isotopes and Earth-atmosphere evolution models;Geochim. Cosmochim. Acta 39 1127–1140CrossRefGoogle Scholar
  41. Ozima M and Zahnle K 1993 Mantle degassing and atmospheric evolution — noble gas view;Geochem. J. 27 185–200Google Scholar
  42. Ozima M, Wieler R, Marty B and Podosek F A 1998 Comparative studies of solar, Q-gases and terrestrial noble gases, and implications on the evolution of the solar nebula;Geochim. Cosmochim. Acta 6b2 301–314CrossRefGoogle Scholar
  43. Pepin R O 1997 Evolution of Earth’s noble gases: consequences of assuming hydrodynamic loss driven by giant impact;Icarus 126 148–156CrossRefGoogle Scholar
  44. Pepin R O 1992 Origin of noble gases in the terrestrial planets;Ann. Rev. Earth Planet. Sci. 20 389–430CrossRefGoogle Scholar
  45. Pepin R O 1991 On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles;Icarus 92 2–79CrossRefGoogle Scholar
  46. Pepin R O and Phinney D 1978 Components of xenon in the solar system; Univ. of Minnesota Space Science CenterGoogle Scholar
  47. Phinney D, Tennyson J and Frick U 1978 Xenon in CO2 well gas revisited;J. Geophys. Res. 83 2313–2319CrossRefGoogle Scholar
  48. Ponganis K V, Graf T, and Marti K 1997 Isotopic fractionation in low-energy ion implantation;J. Geophys. Res. (Planets) 102 19335–19343CrossRefGoogle Scholar
  49. Porcelli D and Wasserburg G J 1994 A unified model for terrestrial rare gases; inVolatiles in the earth and solar system (ed) K A Farley (American Institute of Physics) pp. 56–69Google Scholar
  50. Poreda R J and Farley K A 1992 Rare gases in Samoan xenoliths;Earth Planet. Sci. Lett. 113 129–144CrossRefGoogle Scholar
  51. Sarda P, Staudacher T and Allègre C J 1988 Neon isotopes in submarine basalts;Earth Planet. Sci. Lett. 91 73–88CrossRefGoogle Scholar
  52. Schelhaas N, Ott U and Begemann F 1990 Trapped noble gases in unequilibrated ordinary chondrites;Geochim. Cosmochim. Acta 54 2869–2882CrossRefGoogle Scholar
  53. Shu F H, Shang H and Lee T 1996 Toward an astrophysical theory of chondrites;Science 271 1545–1552CrossRefGoogle Scholar
  54. Shukolyukov Yu A, Fugzan M M, Assonov S S, Koloskov M V, Fisenko A V and Semenova L F 1994 Xe and Kr isotope anomalies in Sikhote-Alin’ iron meteorite inclusions;Geokhimiya 10 1379–1392 (translation:Geochemistry International 31(5) 1–14)Google Scholar
  55. Signer P and Suess H E 1963 Rare gases in the sun, in the atmosphere, and in meteorites; inEarth Science and Meteorites (eds) J Geiss and E D Goldberg (Amsterdam: North-Holland) pp. 241–272Google Scholar
  56. Takaoka N 1972 An interpretation of general anomalies of xenon and the isotopic composition of primitive xenon;Mass Spectrosc. 20 287–302Google Scholar
  57. Valkiers S, Aregbe Y, Taylor P D P and De Bièvre P 1998 A primary xenon isotopic standard with SI traceable values for isotopic composition and molar mass;Int. J. Mass Spectr. and Ion Processes 173 55–63CrossRefGoogle Scholar
  58. Wetherill G W 1981 Solar wind origin of36Ar on Venus;Icarus 46 70–80CrossRefGoogle Scholar
  59. Wieler R and Baur H 1994 Krypton and xenon from the solar wind and solar energetic particles in two lunar ilmenites of different antiquity;Meteoritics 29 570–580Google Scholar
  60. Wieler R, Anders E, Baur H, Lewis R S and Signer P 1992 Characterisation of Q-gases and other noble gas components in the Murchison meteorite;Geochim. Cosmochim. Acta 56 2907–2921CrossRefGoogle Scholar
  61. Wilkening L L and Marti K 1976 Rare gases and fossil particle tracks in the Kenna ureilite;Geochim. Cosmochim. Acta 40 1465–1473CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1998

Authors and Affiliations

  • K. Marti
    • 1
  • K. J. Mathew
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations